Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Пекаревский Борис Владимирович

Должность: Проректор по учебной и методической работе

Дата подписания: 20.11.2023 17:43:44 Уникальный программный ключ:

3b89716a1076b80b2c167df0f27c09d01782ba84

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный технологический институт (технический университет)»

УТВЕРЖДАЮ
Проректор по учебной
и методической работе
Б.В.Пекаревский
« 17 » февраля 2022 г.

Рабочая программа дисциплины МАТЕРИАЛОВЕДЕНИЕ

Направление подготовки

12.03.01 Приборостроение

Профиль программы бакалавриата

Инновационные методы и системы преобразования информации в цифровой индустрии

Квалификация

Бакалавр

Форма обучения

Очная

Факультет механический

Кафедра теоретических основ материаловедения

Санкт-Петербург 2022

СОДЕРЖАНИЕ

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с	
планируемыми результатами освоения образовательной программы	3
2. Место дисциплины в структуре образовательной программы	
3. Объем дисциплины.	
4. Содержание дисциплины	
4.1. Разделы дисциплины и виды занятий.	5
4.2 Формирование индикаторов достижения компетенций разделами дисциплины	
4.3. Занятия лекционного типа	6
4.4. Занятия семинарского типа	7
4.4.1. Лабораторные работы	
4.5. Самостоятельная работа обучающихся	
5. Перечень учебно-методического обеспечения для самостоятельной работы обучающи	1ХСЯ
по дисциплине.	
6. Фонд оценочных средств для проведения промежуточной аттестации	10
7. Перечень учебных изданий, необходимых для освоения дисциплины	11
8. Перечень электронных образовательных ресурсов, необходимых для освоения	
дисциплины	13
9. Методические указания для обучающихся по освоению дисциплины	14
10. Перечень информационных технологий, используемых при осуществлении	
образовательного процесса по дисциплине	14
10.1. Информационные технологии.	
10.2. Программное обеспечение.	
10.3. Базы данных и информационные справочные системы	15
11. Материально-техническое обеспечение освоения дисциплины в ходе реализации	
образовательной программы	15
12. Особенности освоения дисциплины инвалидами и лицами с ограниченными	
возможностями здоровья	16
Приложение № 1	

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Для освоения образовательной программы бакалавриата обучающийся должен овладеть следующими результатами обучения по дисциплине:

Код и наименование	Код и наименование индикатора	Планируемые результаты обучения
компетенции	достижения компетенции	(дескрипторы)
ПК-4. Способен осуществлять сбор и	ПК-4.1 Осуществляет выбор материа-	Знать: общую классификацию современных и перспек-
анализ данных для расчета и проек-	лов фотоники и электроники для	тивных материалов, области их применения (3H-1);
тирования компонентов, узлов изме-	формирования информационно-	основные методы определения свойств и эксплуатацион-
рительных систем, участвовать в раз-	измерительной системы.	ных характеристик материалов фотоники и электроники
работке (на основе действующих		(3H-2).
стандартов и других сопроводитель-		Уметь: оценивать применимость и целесообразность ис-
ных материалов) проектной и рабочей		пользования современных и перспективных материалов
документации в области автоматиза-		для информационно-измерительных систем (У-1).
ции.		Владеть: навыками применения материалов с требуемым
		комплексом свойств при формировании информационно-
		измерительной системы (Н-1).

2. Место дисциплины в структуре образовательной программы

Дисциплина относится к части, формируемой участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы бакалавриата (Б1.В.15) и изучается на 2 курсе в 3 семестре.

В методическом плане дисциплина опирается на элементы компетенций, сформированные при изучении дисциплин «Физика», «Химия», «Математика», «Введение в информационные технологии», «Основы фотометрии».

Полученные в процессе изучения дисциплины «Материаловедение» знания, умения и навыки могут быть использованы при прохождении преддипломной практики, а также при выполнении выпускной квалификационной работы.

3. Объем дисциплины.

o. Odben Anedinamibi.	
Вид учебной работы	Всего, ЗЕ/академ. часов
Общая трудоемкость дисциплины	4/144
(зачетных единиц/ академических часов)	
Контактная работа с преподавателем:	80
занятия лекционного типа	18
занятия семинарского типа, в т.ч.	54
семинары, практические занятия (в том числе практическая подготовка)	-
лабораторные работы (в том числе практическая подготовка)	54(2)
курсовое проектирование (КР или КП)	KP(8)
КСР	-
другие виды контактной работы	-
Самостоятельная работа	37
Форма текущего контроля	тестирование
Форма промежуточной аттестации	КР, экзамен (27)

4. Содержание дисциплины.

4.1. Разделы дисциплины и виды занятий.

		ого типа,	Занятия семинарского типа, академ. часы		работа,	летенции	акаторы
№ п/п	Наименование раздела дисциплины		Самостоятельная акад. часы	Формируемые компетенции	Формируемые индикаторы		
1	Введение. Строение твердых веществ. Механические свойства. Дефекты кристаллической решётки.	2		8		ПК-4	ПК-4.1
2	Двухкомпонентные диаграммы состояния. Диаграмма железоуглерод. Железоуглеродистые сплавы: стали, чугуны.	4		14	6	ПК-4	ПК-4.1
3	Термообработка железо- углеродных сплавов. Химико- термическая, термомеханическая обработка.	4		10	8	ПК-4	ПК-4.1
4	Легированные конструкционные и инструментальные стали, стали с особыми свойствами. Инструментальные материалы.	2		2	8	ПК-4	ПК-4.1
5	Промежуточное компьютерное тестирование № 1 по разделам дисциплины 1-4.			2			
6	Цветные сплавы: сплавы на основе меди, алюминия, титана, никеля, магния.	2		4	8	ПК-4	ПК-4.1
7	Электротехнические, композиционные, магнитные материалы. Полимеры, пластмассы, резины. Аддитивные технологии. Наноматериалы.	2		6		ПК-4	ПК-4.1
8	Коррозия металлов.	2		6	7	ПК-4	ПК-4.1
9	Итоговое компьютерное тестирование № 2 по разделам дисциплины 1-4, 6-7.			2			
	ИТОГО:	18		54	37		

4.2 Формирование индикаторов достижения компетенций разделами дисциплины

№ п/п	Код индикаторов до- стижения компетенции	Наименование раздела дисциплины
1.	ПК-4.1	Введение. Строение твердых веществ. Механические свойства. Дефекты кристаллической решётки. Двухкомпонентные диаграммы состояния. Диаграмма железо-углерод. Железоуглеродистые сплавы: стали, чугуны. Термообработка железо-углеродных сплавов. Химикотермическая, термомеханическая обработка. Легированные конструкционные и инструментальные стали, стали с особыми свойствами. Инструментальные материалы. Цветные сплавы: сплавы на основе меди, алюминия, титана, никеля, магния. Электротехнические, композиционные, магнитные материалы. Полимеры, пластмассы, резины. Аддитивные технологии. Наноматериалы.

4.3. Занятия лекционного типа.

№ раздела дис- циплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
1	Введение. Строение твердых веществ, влияние типа химических связей на механические свойства твёрдых веществ прочность, пластичность, твёрдость, упругость. Дефекты кристаллической решётки.	2	
2	Двухкомпонентные диаграммы состояния. Диаграмма железо-углерод. Фазовые превращения и критические точки. Железо-углеродные сплавы: углеродистые стали (конструкционные, инструментальные), чугуны		
3	Превращения в сталях при нагревании и охлаждении. Термообработка железо-углеродных сплавов. Закалка, отпуск, отжиг, нормализация, старение. Химико-термическая, термомеханическая обработка.	4	
4	Легированные стали (конструкционные, инструментальные), стали с особыми свойствами. Инструментальные материалы		
6	Цветные сплавы. Алюминий и сплавы на его основе — маркировка, свойства, применение. Медь, бронзы, латуни — маркировка, свойства, применение. Сплавы на основе никеля, титана, магния.	2	

№ раздела дис- циплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
7	Электротехнические, композиционные, магнитные материалы. Полимеры, пластмассы, резины. Аддитивные технологии. Наноматериалы.	2	
8	Коррозия металлов. Виды коррозионных разрушений. Показатели коррозионной стойкости. Химическая и электрохимическая коррозия. Влияние коррозионной стойкости металла на работоспособность и надежность изделий и конструкций из него.	2	

4.4. Занятия семинарского типа

4.4.1. Лабораторные работы

№ раздела дис- циплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Примечание
1	Определение твёрдости конструкционных материалов методом Бринелля и инструментальных материалов методом Роквелла . При выполнении лабораторной работы (метод Бринелля) студенты определяют твёрдость четырёх образцов сплавов (сталь, медный сплав, алюминиевый сплав, титановый сплав), проводят статистическую обработку полученных результатов и сравнивают твёрдость и прочность измеренных образцов. При определении твёрдости по методу Роквелла студенты измеряют твёрдость эталонных образцов и нескольких образцов режущих инструментов, проводят статистическую обработку полученных результатов (определяют погрешность измерений) и сравнивают твёрдость и прочность различных инструментальных материалов.	6	
1	Определение размеров зерна. При выполнении работы студенты определяют величину зерна визуальным методом, методом подсчёта зёрен, методом подсчёта пересечения границ, и сравнивают результаты, полученные разными методами.	2	
2	2-х компонентные диаграммы состояния. Закон Гиббса. Правило фаз. Правило отрезков. В соответствии с индивидуальным заданием студенты описывают 2-х компонентную равновесную диаграмм состояния (тип диаграммы, фазы и структуры, линии и точки на диаграмме), строят кривую охлаждения, определяют количество степеней свободы в заданных точках, по правилу отрезков рассчитывают количественное соотношение фаз.	2	

№ раздела дис- циплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Примечание
2	Диаграмма состояния железо — углерод. Фазы, структуры, линии, критические точки. В соответствии с индивидуальным заданием студенты строят кривую охлаждения, описываю фазовый состав сплава и его свойства, по правилу отрезков рассчитывают количественное соотношение фаз и структур.	2	
2	Изучение микроструктуры и свойств медленноохлаждённой углеродистой стали и чугунов В данной работе студенты изучают коллекцию микрошлифов углеродистых сталей с различным содержанием углерода. В соответствии с индивидуальным заданием описывают превращения в данной стали при медленном охлаждении, а также её механические свойства и область применения. Студенты также изучают коллекцию микрошлифов белых и серых чугунов. Исходя из структуры серых чугунов делают заключение об их свойствах.	8	
2	Углеродистые стали. В соответствии с индивидуальным заданием студенты для двух марок сталей отвечают на следующие вопросы: 1. К какой группе сталей относится данный сплав: по химическому составу (содержанию углерода), по раскислению, по качеству, по структуре, по назначению. 2. Механические свойства данной стали. 3. Технологические свойства данной стали. 4. Применение данной стали.	2	
3	Изучение влияния скорости охлаждения при закалке на свойства доэвтектоидной и заэвтектоидной углеродистой стали. При выполнении работы студенты проводят закалку образцов конструкционной и инструментальной углеродистой стали в четырёх охладителях — воздух, вода (Т = 20°С), минеральное масло и 10%-ный раствор NaCl (Т = 20 °С). Затем они строят график зависимости твёрдости стали, определённой методом Роквелла, от относительной интенсивности охлаждения и описывают фазовые превращения на всех стадиях термообработки.	6	

№ раздела дис- циплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Примечание
3	Изучение влияния температуры и времени отпуска на структуру и свойства углеродистой стали. Студенты проводят низкий средний и высокий отпуск образцов углеродистой стали, закалённых в воде, измеряют их твёрдость методом Роквелла, проводят статистическую обработку результатов, строят график зависимости твёрдости от температуры отпуска и описывают фазовые превращения, происходящие в процессе термообработки данной стали. Студенты проводят отпуск закаленной в воде углеродистой стали (средний и высокий) в течении 5; 10; 20; 30 минут. Измеряют твёрдость образцов по методу Роквелла, строят график зависимости твёрдости от времени отпуска и описывают фазовые превращения в образцах	4	
4	Легированные стали. Стали с особыми свойствами В соответствии с индивидуальным заданием студенты для двух марок сталей отвечают на следующие вопросы: 1. Расшифровать состав сплава. 2. Описать структуру сплава. 3. Какой термообработке подвергается сплав (если подвергается) и с какой целью. Структура сплава после термообработки. 4. Какими свойствами (механическими, антикоррозионными, технологическими и т.д.) обладает этот сплав. 5. Применение сплава.	2	
5	Компьютерное тестирование № 1 по разделам 1-4.	2	
6	Сплавы на основе меди. Сплавы на основе алюминия. В соответствии с индивидуальным заданием студенты для двух сплавов на основе меди и двух сплавов на основе алюминия отвечают на следующие вопросы: 1. Расшифровать состав сплава. 2. Описать структуру сплава. 3. Какой термообработке подвергается сплав (если подвергается) и с какой целью. Структура сплава после термообработки. 4. Какими свойствами (механическими, антикоррозионными, технологическими и т.д.) обладает этот сплав. 5. Применение сплава.	4	
7	Полимерные и композиционные материалы. Студенты изучают особенности применения вспучивающихся (интумесцентных) огнезащитных полимерных композитов. В процессе выполнения работы материал наносятся тонким слоем на поверхность подложки. Измеряется толщина защитного покрытия, коэффициент вспучивания, группа огнезащитной эффективности согласно НПБ 236-97.	2	

№ раздела дис- циплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Примечание
7	Электротехнические материалы. При выполнении индивидуальных заданий студенты на ПК выполняют виртуальные лабораторные работы: 1.Определение удельных электрических сопротивлений твёрдых диэлектриков. 2. Исследование диэлектрической прочности твёрдых диэлектриков. 3. Исследование электропроводности проводниковых материалов.	4	
	4. Исследование электропроводности полупроводни- ковых материалов.		
8	Показатели коррозионной стойкости. Студенты определяют скорость коррозии (весовой или объемный показатель) по массовым потерям металла в результате взаимодействия с коррозионной средой.	6	2
9	Компьютерное тестирование № 2 по разделам 1-4, 6-7.	2	

4.5. Самостоятельная работа обучающихся

№ раздела дис- циплины	Перечень вопросов для самостоятельного изучения	Объем, акад. часы	Форма кон- троля
2	Автоматные стали. Литейные стали.	6	Устный опрос
3	Химико-термическая обработка. Цементация. Азотирование. Нитроцементация. Цианирование. Диффузионная металлизация. Термомеханическая обработка (HTMO, BTMO).	8	Устный опрос
4	Износостойкие стали. Твердые сплавы. Абразивные материалы.	8	Устный опрос
	Сплавы на основе магния, никеля и титана.	8	
8	Виды коррозии. Атмосферная коррозия. Под- земная коррозия. Межкристаллитная коррозия. Методы защиты от коррозии.	7	Устный опрос

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине.

Методические указания для обучающихся по организации самостоятельной работы по дисциплине, включая перечень тем самостоятельной работы, формы текущего контроля по дисциплине и требования к их выполнению размещены в электронной информационно-образовательной среде СПбГТИ(ТУ) на сайте: http://media.technolog.edu.ru

6. Фонд оценочных средств для проведения промежуточной аттестации

Промежуточная аттестация по дисциплине проводится в форме защиты курсовой работы и сдачи экзамена.

К экзамену допускаются студенты, выполнившие все формы текущего контроля. Экзамен предусматривают выборочную проверку освоения предусмотренных элементов компетенций и комплектуются тремя вопросами из различных разделов дисциплины.

Время подготовки студента к устному ответу - до 30 мин.

Пример варианта вопросов на экзамене:

Задание № 1

- 1. Превращения в углеродистых сталях при охлаждении. Перлитное превращение. Определение перлита, сорбита, троостита
- 2. Химико-термическая обработка. Азотирование.
- 3. Композиционные материалы. Классификация. Методы изготовления изделий из КМ.

Фонд оценочных средств по дисциплине представлен в Приложении № 1

Результаты освоения дисциплины считаются достигнутыми, если для всех элементов компетенций достигнут пороговый уровень освоения компетенции на данном этапе – оценка «удовлетворительно».

7. Перечень учебных изданий, необходимых для освоения дисциплины.

а) печатные издания:

- 1. Материаловедение: учебное пособие / М.М.Сычев, С.В.Мякин, Т.В.Лукашова, К.А.Огурцов // Министерство образования и науки Российской федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: СПбГТИ(ТУ), 2017. 66 с.
- 2. Лукашова, Т.В. Углеродистые стали: учебное пособие / Т.В.Лукашова, С.В.Мякин, К.А.Огурцов // Министерство образования и науки Российской федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: СПбГТИ(ТУ), 2018. 23 с.
- 3. Легированные стали: учебное пособие / Т.В. Лукашова, С.И. Гринева, В.Н. Коробко, С.В. Мякин // Министерство образования и науки Российской федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: СПбГТИ(ТУ), 2013. 38 с.
- 4. Алюминий, магний и легкие сплавы на их основе: учебное пособие / С.В.Мякин, Т.В. Лукашова, Н.А. Христюк, М.М. Сычев // Министерство образования и науки Российской федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: СПбГТИ(ТУ), 2019. 32 с.
- 5. Лукашова, Т.В. Медь и сплавы на ее основы: учебное пособие / Т.В. Лукашова, С.В. Мякин, К.А. Огурцов // Министерство образования и науки Российской федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: СПбГТИ(ТУ), 2020. 34 с.
- 6. Мякин, С.В. Никель, титан и сплавы на их основе: Учебное пособие / С.В. Мякин, Т.В.Лукашова // Министерство образования и науки Российской федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: СПбГТИ(ТУ), 2019. 39 с.
- 7._Арзамасов, В.Б. Материаловедение: учебник для студ. учреждений высш. проф. Образования / В.Б. Арзамасов, А.А. Черепахин, Москва: Издательский центр «Академия», 2013. 173 с. ISBN 978-5-7695-8835-8.

- 8. Готтштайн, Г. Физико-химические основы материаловедения: / Г. Готтштайн; пер. с англ. К. Н. Золотовой, Д. О. Чаркина, под ред. В. П. Зломанова. Москва: БИНОМ. Лаборатория знаний, 2009.-400 с. ISBN 978-5-94774-769-0.
- 9. Елисеев, А. А. Функциональные наноматериалы: учебное пособие для вузов по спец. 020101 (011000) «Химия» / А. А. Елисеев, А. В. Лукашин; под ред. Ю. Д. Третьякова. Москва: Физматлит, 2010. 452 с. ISBN 978-5-9221-1120-1.
- 10. Каллистер, У. Д. Материаловедение: от технологии к применению (металлы, керамика, полимеры) / У. Д. Каллистер, Д. Дж. Ретвич; пер. с англ. под ред. А. Я. Малкина. Санкт-Петербург: Изд-во НОТ, 2011. 895 с. ISBN 978-5-91703-022-7.
- 11. Лахтин, Ю.М. Материаловедение: учебник для вузов. / Ю.М. Лахтин, В.П. Леонтьева. Москва: Альянс, 2009. 528 с. ISBN 978-5-903034-54-3.
- 12. Материаловедение и технологии современных и перспективных материалов: лабораторный практикум / М.М. Сычев, В.Н. Коробко, В.В. Бахметьев, С.В. Мякин [и др.]; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: [б. и.], 2013. 161 с.
- 13. Полимерные композиционные материалы: структура, свойства, технология: учебное пособие для вузов по спец. "Технология переработки пластических масс и эластомеров"/ М. Л. Кербер [и др.]. Санкт-Петербург: Профессия, 2009. 557 с. ISBN 978-5-93913-130-8.
- 14. Солнцев, Ю.П. Материаловедение: учебник для вузов. / Ю.П. Солнцев, Е.И. Пряхин. Санкт-Петербург: Химиздат, 2007 784 с. ISBN 5-93808-131-9.
- 15. Химическая диагностика материалов / В. Г. Корсаков [и др.]. Петербург. гос. ун-т путей сообщения. Санкт-Петербург: Петербург. гос. ун-т путей сообщения, 2010. 224 с. ISBN 978-5-7641-0254-2.

б) электронные издания:

- 1. Материаловедение: учебное пособие / М.М.Сычев, С.В.Мякин, Т.В.Лукашова, К.А.Огурцов // Министерство образования и науки Российской федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: СПбГТИ(ТУ), 2017. 66 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 15.01.2021). Режим доступа: для зарегистрир. пользователей.
- 2. Лукашова, Т.В. Углеродистые стали: учебное пособие / Т.В.Лукашова, С.В.Мякин, К.А.Огурцов // Министерство образования и науки Российской федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: СПбГТИ(ТУ), 2018. 23 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 15.12.2020). Режим доступа: для зарегистрир. пользователей.
- 3. Легированные стали: учебное пособие / Т.В. Лукашова, С.И. Гринева, В.Н. Коробко, С.В. Мякин // Министерство образования и науки Российской федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: СПбГТИ(ТУ), 2013. 38 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 15.12.2020). Режим доступа: для зарегистрир. пользователей.
- 4. Алюминий, магний и легкие сплавы на их основе: учебное пособие / С.В.Мякин, Т.В. Лукашова, Н.А. Христюк, М.М. Сычев // Министерство образования и науки Российской федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: СПбГТИ(ТУ), 2019. 32 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 25.12.2020). Режим доступа: для зарегистрир. пользователей.

- 5. Лукашова, Т.В. Медь и сплавы на ее основы: учебное пособие / Т.В. Лукашова, С.В. Мякин, К.А. Огурцов // Министерство образования и науки Российской федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: СПбГТИ(ТУ), 2020. 34 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 26.12.2020). Режим доступа: для зарегистрир. пользователей.
- 6. Мякин, С.В. Никель, титан и сплавы на их основе: Учебное пособие / С.В. Мякин, Т.В.Лукашова // Министерство образования и науки Российской федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: СПбГТИ(ТУ), 2019. 39 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 15.12.2020). Режим доступа: для зарегистрир. пользователей.
- 7. Закалка углеродистых сталей: Методические указания к лабораторной работе: / В. Н. Коробко [и др.]; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: [б. и.], 2010. 22 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 18.12.2020). Режим доступа: для зарегистрир. пользователей.
- 8. Коробко, В.Н. Основы технологии конструкционных материалов: Учебное пособие / В. Н. Коробко, М. М. Сычев, А. Б. Романов; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: [б. и.], 2012. 97 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 15.12.2020). Режим доступа: для зарегистрир. пользователей.
- 9. Коробко, В. Н. Иллюстративный материал для лекций по курсу "Материаловедение": учебное пособие / В.Н. Коробко, М.М. Сычев, Г.Е. Горянина; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: [б. и.], 2011. 61с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 20.12.2020). Режим доступа: для зарегистрир. пользователей.
- 10. Материаловедение и технологии современных и перспективных материалов: лабораторный практикум / М.М.Сычев, В.Н. Коробко, В.В. Бахметьев [и др.]; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: [б. и.], 2013. 161 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 15.12.2020). Режим доступа: для зарегистрир. пользователей.

8. Перечень электронных образовательных ресурсов, необходимых для освоения дисциплины.

Интернет-ресурсы: проводить поиск в различных системах, таких как www.yandex.ru, www.google.ru, www.rambler.ru, www.yahoo.ru и использовать материалы сайтов, рекомендованных преподавателем на лекционных занятиях.

С компьютеров института открыт доступ к:

<u>www.elibrary.ru</u> - eLIBRARY - научная электронная библиотека периодических изданий;

<u>http://e.lanbook.com</u> - Электронно-библиотечная система издательства «Лань», коллекции «Химия» (книги издательств «Лань», «Бином», «НОТ»), «Нанотехнологии» (книги издательства «Бином. Лаборатория знаний»);

<u>www.consultant.ru</u> - Консультант Π люс - база законодательных документов по $P\Phi$ и Санкт-Петербургу;

<u>www.scopus.com</u> - База данных рефератов и цитирования Scopus издательства Elsevier:

<u>http://webofknowledge.com</u> - Универсальная реферативная база данных научных публикаций Web of Science компании Thomson Reuters;

http://iopscience.iop.org/journals?type=archive, http://iopscience.iop.org/page/subjects - Издательство IOP (Великобритания);

www.oxfordjournals.org - Архив научных журналов издательства Oxford University Press;

<u>http://www.sciencemag.org/</u> - Полнотекстовый доступ к журналу Science (The American Association for the Advancement of Science (AAAS));

http://www.nature.com - Доступ к журналу Nature (Nature Publishing Group);

<u>http://pubs.acs.org</u> - Доступ к коллекции журналов Core + издательства American Chemical Society;

<u>http://journals.cambridge.org</u> - Полнотекстовый доступ к коллекции журналов Cambridge University Press.

9. Методические указания для обучающихся по освоению дисциплины.

Все виды занятий по дисциплине «Материаловедение» проводятся в соответствии с требованиями следующих СТП:

СТП СПбГТИ 040-02. КС УКДВ. Виды учебных занятий. Лекция. Общие требования;

СТО СПбГТИ 020-2011. КС УКДВ. Виды учебных занятий. Лабораторные занятия. Общие требования к организации и проведению.

СТП СПбГТИ 048-2009. КС УКДВ. Виды учебных занятий. Самостоятельная планируемая работа студентов. Общие требования к организации и проведению.

СТО СПбГТИ(ТУ) 016-2015. КС УКДВ. Порядок организации и проведения зачетов и экзаменов.

Планирование времени, необходимого на изучение данной дисциплины, лучше всего осуществлять на весь семестр, предусматривая при этом регулярное повторение пройденного материала.

Основными условиями правильной организации учебного процесса для студентов является:

плановость в организации учебной работы;

серьезное отношение к изучению материала;

постоянный самоконтроль.

На занятия студент должен приходить, имея знания по уже изученному материалу.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине.

10.1. Информационные технологии.

В учебном процессе по данной дисциплине предусмотрено использование информационных технологий:

чтение лекций с использованием слайд-презентаций; взаимодействие с обучающимися посредством ЭИОС.

10.2. Программное обеспечение.

Для проведения занятий имеются персональные компьютеры с программным обеспечением:

- Windows,

- OpenOffice.

10.3. Базы данных и информационные справочные системы.

- 1. http://prometeus.nse.ru база ГПНТБ СО РАН.
- 2. http://borovic.ru база патентов России.
- 3. http://1.fips.ru/wps/portal/Register Федеральный институт промышленной собственности
 - 4. http://google/com/patent- база патентов США.
 - 5. http://freepatentsonline.com- база патентов США.
 - 6. http://patentmatie.com/welcome база патентов США.
 - 7. http://patika.ru/Epasenet_patentnie_poisk.html европейская база патентов.
 - 8. http://gost-load.ru- база ГОСТов.
 - 9. http://worlddofaut.ru/index.php база ГОСТов.
 - 10. http://elibrary.ru Российская поисковая система научных публикаций.
 - 11. http://springer.com англоязычная поисковая система научных публикаций.
 - 12. http://dissforall.com база диссертаций.
 - 13. http://diss.rsl.ru база диссертаций.
 - 14. http://webbook.nist.gov/chemistry NIST Standard Reference Database.
 - 15. http://riodb.ibase.aist.go.jp/riohomee.html база спектров химических соединений.
 - 16. http://markmet.ru марочник сталей.

11. Материально-техническое обеспечение освоения дисциплины в ходе реализации образовательной программы.

Учебная аудитория для проведения лекционных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Основное оборудование: столы; стулья; доска; демонстрационный экран, проектор, ком-

пьютер. Учебная аудитория для проведения занятий семинарского типа.

з попал аудиторил для проведения запять

Основное оборудование: столы; стулья,

- Комплекс электрических измерений наноструктур;
- Комплекс спектральных измерений;
- Комплекс оптических измерений;
- Установка молекулярного наслаивания,
- Установка измерения полярной и неполярной составляющих свободной поверхностной энергии;
- Анализатор размера частиц;
- Дилатометр кварцевый ДКВ-4,
- Ротационный вискозиметр «Rheotest»,
- Пресса CarlZeisse Jena усилием 10 и 30 т.;
- Две ультразвуковые ванна УЗУ- 0.25;
- Весы электронные аналитические ALC-210d4, электронные технические ET-300;
- Весы механические ВНЦ, ВКЛ-500M, ВЛР-200, WA-21;
- Три бокса 7БП1-ОС;
- Вакуумные сушильные шкафы SPT-200,
- Электропечи лабораторные SNOL 6,7/1300, PЭM 24/87, МП-2УМ и др. с рабочей температурой до 16000C;
- Термометры, термопары;
- Бидистилляторы стеклянные БС, дистилляторы ДЭ-4,
- Магнитные мешалки ММ-5.

Помещение для самостоятельной работы,

Основное оборудование: столы; стулья; проектор, экран;

компьютеры с доступом к информационно-телекоммуникационной сети «Интернет».

12. Особенности освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья.

Для инвалидов и лиц с ограниченными возможностями учебные процесс осуществляется в соответствии с Положением об организации учебного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья СПбГТИ(ТУ), утвержденным ректором 28.08.2014.

Фонд оценочных средств для проведения промежуточной аттестации по дисциплине «Материаловедение»

1. Перечень компетенций и этапов их формирования.

Индекс ком- петенции	Содержание	Этап формиро- вания
ПК-4	Способен осуществлять сбор и анализ данных для расчета и проектирования компонентов, узлов измерительных систем, участвовать в разработке (на основе действующих стандартов и других сопроводительных материалов) проектной и рабочей документации в области автоматизации.	промежуточный

2. Показатели и критерии оценивания компетенций на различных этапах их формирования, шкала оценивания

Код и наименова- ние индикатора	Показатели сформированности (дескрипторы)	Критерий оценивания	УРОВНИ СФОРМИРОВАННОСТИ (описание выраженности дескрипторов)		
достижения ком- петенции			«удовлетворительно» (пороговый)	«хорошо» (средний)	«отлично» (высокий)
ПК-4.1 Осуществляет выбор материалов фотоники и электроники для формирования информационно-измерительной системы.	Знает общую классификацию современных и перспективных материалов, области их применения (ЗН-1). Знает основные методы определения свойств и эксплуатационных характеристик материалов фотоники и электроники (ЗН-2). Умеет оценивать применимость и целесообразность использования современных и перспективных материалов для конкретных назначений (У-1). Владеет навыками применения материалов с требуемым комплексом свойств (Н-1).	Ответы на вопросы к экзамену № 1-54, СРС 1-21. Курсовая работа.	Имеет общее представление о структуре и свойствах материалов, областях их применения. Имеет представление об основных методах определения свойств и эксплуатационных характеристик материалов. Имеет представление о принципах выбора материалов для различных применений.	Способен анализировать взаимосвязь между структурой, свойствами и техническими характеристиками материалов на конкретных примерах. Способен осуществлять оптимальный выбор методов испытаний для определения конкретных характеристик материалов Выявляет взаимосвязь между структурой и свойствами материалов. Способен определить области их применения. Способен осуществлять оптимальный выбор материалов при выполнении контрольных заданий	Обладает широким спектром знаний в области современных материалов фотоники и электроники, методов определения их свойств, требований, предъявляемых к их качеству, надежности, стоимости. Способен самостоятельно проводить стандартные испытания материалов при решении практических задач. Способен анализировать и сопоставлять данные о характеристиках материалов с выработкой рекомендаций по их оптимальному выбору. Способен выбирать тип материалов с требуемыми свойствами и характеристиками для применения в конкретных технологиях.

- 3. Типовые контрольные задания для проведения промежуточной аттестации
- а) Вопросы для оценки знаний, умений и навыков, сформированных у студента по компетенции ПК-4:
 - 1. Материаловедение определение и объект изучения науки. Классификация материалов.
 - 2. Природа химической связи и свойства материалов.
 - 3. Типы кристаллических решеток, координационные числа, связь с плотностью и другими свойствами кристаллов. Типы дефектов в кристаллах. Влияние дефектов на прочность.
 - 4. Упругая и пластическая деформация. Наклеп. Рекристаллизация.
 - 5. Механические свойства материалов и способы их измерения.
 - 6. Правило фаз Гиббса. Правило отрезков. Пример применения. Построение кривой охлаждения сплава.
 - 7. Начертить двухкомпонентную диаграмму состояния для сплавов с отсутствием растворимости компонентов в твердом состоянии. Описать точки, линии, фазы и области на диаграмме.
 - 8. Начертить двухкомпонентную диаграмму состояния для сплавов с неограниченной растворимостью компонентов в твердом состоянии. Описать точки, линии, фазы и области на диаграмме.
 - 9. Начертить двухкомпонентную диаграмму состояния для сплавов с ограниченной растворимостью компонентов в твердом состоянии. Описать точки, линии, фазы и области на диаграмме.
 - 10. Начертить двухкомпонентную диаграмму состояния для сплавов с образованием в твердом состоянии химического соединения. Описать точки, линии, фазы и области на диаграмме.
 - 11. Равновесная диаграмма железо-углерод. Линии на диаграмме и критические точки
 - 12. Превращения в углеродистых сталях при нагревании. Фазовые превращения.
 - 13. Превращения в углеродистых сталях при охлаждении. Перлитное превращение. Дать определение перлита, сорбита, троостита.
 - 14. Дать определения и описать свойства феррита, аустенита, цементита. Как на их свойства влияет легирование.
 - 15. Термические обработки закалка. Определение, зачем применяется. Как и почему при этом изменяются свойства.
 - 16. Термическая обработка отпуск. Определение, зачем применяются. Как и почему при этом изменяются свойства.
 - 17. Термическая обработка отжиг. Определение, виды, зачем применяется. Как и почему при этом изменяются свойства.
 - 18. Термическая обработка нормализация. Упрочняющая термическая обработка закалка и старение
 - 19. Углеродистые стали. Влияние углерода и примесей на структуру и свойства сталей. Маркировка углеродистых сталей.
 - 20. Конструкционные легированные стали. Маркировка, влияние легирующих элементов на структуру и свойства сталей.
 - 21. Стали с особыми свойствами. Нержавеющие, жаростойкие, жаропрочные стали.
 - 22. Инструментальные материалы. Углеродистые и легированные инструментальные стали.
 - 23. Чугуны виды, получение, свойства, маркировка, применение.
 - 24. Классификация алюминиевых сплавов. Закалка и старение алюминиевых сплавов. Определение, зачем применяются. Как и почему при этом изменяются свойства.

- 25. Деформируемые алюминиевые сплавы неупрочняемые термообработкой. Маркировка, состав, структура, свойства, применение.
- 26. Деформируемые алюминиевые сплавы упрочняемые термообработкой. Маркировка, состав, структура, свойства, применение.
- 27. Спеченные алюминиевые порошки. Марки, структура, состав, свойства, применение.
- 28. Литейные алюминиевые сплавы (силумины). Марки, структура, состав, свойства, применение.
- 29. Латуни. Маркировка, состав, свойства, применение.
- 30. Бронзы. Маркировка, состав, свойства, применение.
- 31. Пластмассы. Структура. Термопласты, их свойства и применение.
- 32. Пластмассы. Структура. Реактопласты, их свойства и применение.
- 33. Электротехнические материалы. Проводниковые материалы с низким удельным сопротивлением. Сверхпроводники.
- 34. Электротехнические материалы. Проводниковые материалы с высоким удельным сопротивлением. Контактные материалы. Припои.
- 35. Композиционные материалы. Структура и свойства. Гетинакс, текстолит, стеклотекстолит, ДСП и т.д.
- 36. Виды коррозионных разрушений. Влияние коррозионной стойкости металла на работоспособность и надежность изделий и конструкций из него.
- 37. Показатели коррозионной стойкости. Влияние коррозионной стойкости металла на работоспособность и надежность изделий и конструкций из него.
- 38. Химическая и электрохимическая коррозия. Влияние коррозионной стойкости металла на работоспособность и надежность изделий и конструкций из него.
- 39. Материаловедение определение и объект изучения науки. Классификация материалов.
- 40. Природа химической связи и свойства материалов.
- 41. Типы кристаллических решеток, координационные числа, связь с плотностью и другими свойствами кристаллов. Типы дефектов в кристаллах. Влияние дефектов на прочность.
- 42. Упругая и пластическая деформация. Наклеп. Рекристаллизация.
- 43. Механические свойства материалов и способы их измерения.
- 44. Превращения в углеродистых сталях при нагревании. Фазовые превращения.
- 45. Превращения в углеродистых сталях при охлаждении. Перлитное превращение. Дать определение перлита, сорбита, троостита.
- 46. Дать определения и описать свойства феррита, аустенита, цементита. Как на их свойства влияет легирование.
- 47. Термические обработки закалка. Определение, зачем применяется. Как и почему при этом изменяются свойства.
- 48. Термическая обработка отпуск. Определение, зачем применяются. Как и почему при этом изменяются свойства.
- 49. Термическая обработка отжиг. Определение, виды, зачем применяется. Как и почему при этом изменяются свойства.
- 50. Термическая обработка нормализация. Упрочняющая термическая обработка закалка и старение
- 51. Углеродистые стали. Влияние углерода и примесей на структуру и свойства сталей. Маркировка углеродистых сталей.
- 52. Виды коррозионных разрушений. Влияние коррозионной стойкости металла на работоспособность и надежность изделий и конструкций из него.
- 53. Показатели коррозионной стойкости. Влияние коррозионной стойкости металла на работоспособность и надежность изделий и конструкций из него.

- 54. Химическая и электрохимическая коррозия. Влияние коррозионной стойкости металла на работоспособность и надежность изделий и конструкций из него.
- б) Перечень вопросов для проверки самостоятельной работы студентов (ПК-4).
 - 1. Химико-термическая обработка. Цементация. Азотирование.
 - 2. Химико-термическая обработка. Нитроцементация. Цианирование.
 - 3. Химико-термическая обработка. Диффузионная металлизация.
 - 4. Термомеханическая обработка (ВТМО, НТМО).
 - 5. Автоматные стали. Литейные стали.
 - 6. Износостойкие стали. Сталь Гадфильда. Графитизированная сталь.
 - 7. Износостойкие стали. Штамповые стали.
 - 8. Износостойкие стали. Подшипниковые стали.
 - 9. Инструментальные материалы. Твердые сплавы.
 - 10. Инструментальные материалы. Абразивные материалы.
 - 11. Сплавы на основе никеля.
 - 12. Сплавы на основе титана.
 - 13. Виды коррозии. Атмосферная коррозия.
 - 14. Виды коррозии. Подземная коррозия.
 - 15. Виды коррозии. Межкристаллитная коррозия.
 - 16. Методы защиты от коррозии. Методы воздействия на коррозионную среду.
 - 17. Методы защиты от коррозии. Металлические защитные покрытия.
 - 18. Методы защиты от коррозии. Защитные покрытия на органической основе.
 - 19. Методы защиты от коррозии. Защитные покрытия на неорганической основе.
 - 20. Методы защиты от коррозии. Электрохимическая защита.
 - 21. Методы защиты от коррозии. Защита на стадии проектирования

4. Методические материалы для определения процедур оценивания знаний, умений и навыков, характеризующих этапы формирования компетенций.

Промежуточная аттестация по дисциплине проводится в соответствии с требованиями СТО СПбГТИ(ТУ) 016-2015. КС УКДВ. Порядок организации и проведения зачетов и экзаменов.

Выполнение курсовой работы по дисциплине проводится в соответствии с требованиями СТО СПбГТИ(ТУ) 044-2012. КС УКДВ. Виды учебных занятий. Курсовой проект. Курсовая работа. Общие требования.

По дисциплине промежуточная аттестация проводится в форме экзамена и защиты курсовой работы. Для получения экзамена должен быть достигнут «пороговый» уровень сформированности компетенций.

5. Курсовая работа.

«Поиск, анализ и систематизация информации в материаловедении»

Курсовая работа выполняется в форме реферата по предварительно согласованной с преподавателем теме в области современных и перспективных материалов фотоники и электроники. Работа объемом не менее 8 страниц (14 шрифт, 1,5 интервала) должен включать сведения о классификации, особенностях состава и структуры, истории создания, областях применения, технологиях изготовления, важнейших целевых характеристиках (включая достигнутые на данный момент их количественные значения) и методах их определения, а также перспективах дальнейшего усовершенствования (внедрения, расширения областей применения) для выбранного класса материалов. Работа должна быть основана на анализе не менее 8 источников информации, которые должны быть указаны в тексте и списке использованных источников в соответствии с современными требованиями и включать:

- статьи в научных журналах

- охранные документы на объекты интеллектуальной собственности (патенты, свидетельства и др.)
- нормативно-техническую документацию (стандарты, технические условия, технические регламенты).

Примерные темы курсовых работ:

- 1. Полупроводниковые материалы для современной электроники. Электронные полупроводники.
- 2. Полупроводниковые материалы для современной электроники. Фотонные полупроводники.
- 3. Пределы миниатюризации в электронике с точки зрения материаловедения
- 4. Наноструктурированные материалы для фотоники.
- 5. Полимерные материалы в фотонике.
- 6. Метаматериалы.
- 7. Лазерные кристаллы.
- 8. Нелинейные кристаллы.