Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Пекаревский Борис Владимирович

Должность: Проректор по учебной и методической работе

Дата подписания: 13.10.2023 10:06:06 Уникальный программный ключ:

3b89716a1076b80b2c167df0f27c09d01782ba84

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный технологический институт (технический университет)»

УТВЕРЖДАЮ
Проректор по учебной
и методической работе
Б.В.Пекаревский
« 26 » апреля 2019 г.

Рабочая программа дисциплины Теоретические основы химической технологии

Направление подготовки

09.03.01Информатика и вычислительная техника

Направленность программы бакалавриата

Автоматизированные системы обработки информации и управления

Квалификация

Бакалавр

Форма обучения

Очная

Факультет химии веществ и материалов Кафедра общей химической технологии и катализа

> Санкт-Петербург 2019

ЛИСТ СОГЛАСОВАНИЯ

Должность	Подпись	Ученое звание, фамилия, инициалы
Доцент		С.А.Лаврищева

Рабочая программа дисциплины «Теоретические основы химической технологии» обсуждена на заседании кафедры общей химической технологии и катализа протокол от «21_» $\underline{02}$ ____2019 №8 Заведующий кафедрой А.Ю.Постнов

Одобрено учебно-методической комиссией факультета Химии веществ и материалов протокол от «21» марта 2019 № 6

Председатель С.Г.Изотова

СОГЛАСОВАНО

Руководитель направления подготовки	Т.Б.Чистякова
«Информатика и вычислительная	
техника»	
Директор библиотеки	Т.Н.Старостенко
Начальник методического отдела	Т.И.Богданова
учебно-методического управления	
Начальник	С.Н.Денисенко
учебно-методического управления	

СОДЕРЖАНИЕ

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с	
планируемыми результатами освоения образовательной программы	04
2. Место дисциплины (модуля) в структуре образовательной программы	06
3. Объем дисциплины	06
4. Содержание дисциплины	
4.1. Разделы дисциплины и виды занятий	07
4.2. Занятия лекционного типа	07
4.3. Занятия семинарского типа	09
4.3.1. Семинары, практические занятия	09
4.4. Самостоятельная работа обучающихся	09
5. Перечень учебно-методического обеспечения для самостоятельной работы обуча	ающихся
по дисциплине	10
6. Фонд оценочных средств для проведения промежуточной аттестации	10
7. Перечень основной и дополнительной учебной литературы, необходимой для	
освоения дисциплины	10
8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет»,	
необходимых для освоения дисциплины	11
9. Методические указания для обучающихся по освоению дисциплины	11
10. Перечень информационных технологий, используемых при осуществлении	
образовательного процесса по дисциплине	
10.1. Информационные технологии	12
10.2. Программное обеспечение	12
10.3. Базы данных и информационные справочные системы	12
11. Материально-техническая база, необходимая для осуществления образовательн	
процесса по дисциплине	12
12. Особенности освоения дисциплины инвалидами и лицами с ограниченными	
возможностями здоровья	12

Приложения: 1. Фонд оценочных средств для проведения промежуточной аттестации.

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы.

В результате для освоения образовательной программы бакалавриата обучающийся должен овладеть следующими результатами обучения по дисциплине:

Код и наименование	Код и наименование индикатора	Планируемые результаты обучения
компетенции	достижения компетенции	(дескрипторы)
ОПК-1 Способен применять естествен-	ОПК-1.17	Знать:
нонаучные и общеинженерные знания,	Использование методов математического	методики составления материальных и энергетических
методы математического анализа и	моделирования, теоретического и	балансов реактора и химико-технологической системы в
моделирования, теоретического и	экспериментального исследования при	целом (3H-1);
экспериментального исследования в профессиональной деятельности	решении задач профессиональной	основные термодинамические характеристики химико-
профессиональной деятельности	деятельности	технологического процесса (ЗН-2);
		перечень вариабильных кинетических характеристик
		химико-технологического процесса (3H-3);
		перечень управляющих параметров химико-
		технологического процесса, влияющих на величину
		наблюдаемой скорости процесса (ЗН-4);
		принципы построения математических моделей
		идеализированных реакторов (ЗН-5).
		Уметь:
		рассчитывать материальные и энергетические балансы
		реактора и химико-технологической системы в целом (У-
		1);
		рассчитывать термодинамическую константу равновесия
		(Y-2);
		определять значения кинетических характеристик по
		результатам эксперимента (У-3);
		рассчитывать скорость процесса (У-4);
		рассчитывать необходимый объём идеализированного
		реактора (У-5).
		Владеть:
		навыками оптимизации структуры материальных и

Код и наименование	Код и наименование индикатора	Планируемые результаты обучения	
компетенции	достижения компетенции	(дескрипторы)	
		энергетических потоков по технико-экономическим	
		критериям (Н-1);	
		навыками расчёта равновесного состава реакционной	
		смеси (Н-2);	
		навыками анализа кинетических характеристик химико-	
		технологического процесса (Н-3);	
		навыками управления скоростью процесса (Н-4);	
		навыками определения рационального температурного	
		режима работы идеализированного реактора (Н-5).	

2. Место дисциплины в структуре образовательной программы.

Дисциплина относится к дисциплинам обязательной части (Б1.О.33) и изучается на 2 курсе в 3 семестре.

В методическом плане дисциплина опирается на элементы компетенций, сформированные при изучении дисциплин «Химия», «Математический анализ» и «Информатика». Полученные в процессе изучения дисциплины «Теоретические основы химической технологии» знания, умения и навыки могут быть использованы при изучении дисциплин «Процессы и аппараты химических производств», «Разработка программных комплексов для исследований в химии и химической технологии», «Геометрическое моделирование в химии и химической технологии», «Компьютерное моделирование в химии и химической технологии», «Основы проектирования технологического оборудования», «Основы проектирования химико-технологических систем», при прохождении производственной практики, а также при выполнении выпускной квалификационной работы.

3. Объем дисциплины.

Вид учебной работы	Всего, 3Е/академ. часов
Общая трудоемкость дисциплины (зачетных единиц/ академических часов)	3/ 108
Контактная работа с преподавателем:	58
занятия лекционного типа	18
занятия семинарского типа, в т.ч.	36
семинары, практические занятия	36
лабораторные работы	-
курсовое проектирование (КР или КП)	-
КСР	4
другие виды контактной работы	-
Самостоятельная работа	50
Форма текущего контроля (Кр, реферат, РГР, эссе)	-
Форма промежуточной аттестации(КР, КП, зачет, экзамен)	Зачет

4. Содержание дисциплины.

4.1. Разделы дисциплины и виды занятий.

		эго типа, ы	Занятия семинарско го типа, академ. часы		работа, ы	петенции	икаторы
№ п/п	Наименование раздела дисциплины	Занятия лекционного академ. часы	Семинары и/или практические	Лабораторные работы	Самостоятельная работа академ. часы	Формируемые компетенции	Формируемые индикаторы
1.	Материальные и энергетические расчёты	6	12	_	16	ОПК-1	ОПК- 1.17
2.	Термодинамика и кинетика химико-технологического процесса	6	12	_	16	ОПК-1	ОПК- 1.17
3.	Управление химико- технологическим процессом в идеализированном реакторе	6	12	_	18	ОПК-1	ОПК- 1.17

4.2. Занятия лекционного типа.

№ Раздела дисциплины	Наименование темы и краткое содержание занятия	Объем, акад.часы	Инновационная форма
1	Материальные и энергетические расчёты Современные тенденции развития химической технологии. Сырьевая и энергетическая базы химической промышленности. Показатели качества протекания химико-технологического процесса (ХТП). Избирательность. Удельные материальные, энергетические и эксплуатационные затраты. Материальные и тепловые балансы как основа для оценки затрат на сырье, топливо и электроэнергию при производстве химических продуктов. Методика составления уравнений материального и теплового балансов реактора.		Компьютерная презентация (Л)

№ Раздела дисциплины	Наименование темы и краткое содержание занятия	Объем, акад.часы	Инновационная форма
2	Термодинамика и кинетика химико- технологического процесса Химическое равновесие, расчет равновесных концентраций. Управление состоянием равновесия химико-технологического процесса. Анализ влияния управляющих параметров на равновесный состав реакционной смеси. Скорость химико-технологического процесса. Лимитирующая стадия и её идентификация. Экспериментальные методы определения кинетическихконстант. Управление скоростью химико-технологического процесса.	6	Компьютерная презентация (Л)
3	Управление химико-технологическим процессом в идеализированном реакторе. Химические процессы в идеализированных реакторах непрерывного действия (полного смешения, идеального вытеснения). Устойчивость. Управляющие параметры. Расчет химического процесса в потоке полного смешения. Стационарный и нестационарный режимы. Множественность стационарных состояний. Расчет химического процесса в потоке идеального вытеснения. Общие принципы организации обратимых экзо- и эндотермических процессов. Способы регулирования температурного и концентрационного режима работы многополочного реактора при проведении обратимого экзотермического процесса. Задача оптимизации. Типовые проточные и циркуляционные химико-технологические системы.	6	Компьютерная презентация (Л)

4.3. Занятия семинарского типа.

4.3.1. Семинары, практические занятия.

№ разделадисц иплины	Наименование темы и краткое содержание занятия	Объем, акад.часы	Инновационная форма
1	Расчёт материального и теплового баланса адиабатического реактора непрерывного действия	6	КтСм
1	Расчёт материального и теплового баланса политермического реактора непрерывного действия для циклического процесса	6	КтСм
2	Расчет константы равновесия химической реакции и равновесного состава реакционной смеси	6	КтСм
2	Расчет наблюдаемой скоростихимической реакции	6	КтСм
3	Расчет объема реактора полного смешения при различных температурных режимах работы	6	КтСм
3	Расчет объема реактора идеального вытеснения при различных температурных режимах работы	6	КтСм

4.4.Самостоятельная работа обучающихся.

№ Разделадисц иплины	Перечень вопросов для самостоятельного изучения	Объем, акад.часы	Форма контроля
1	Расчёт материального энергетического баланса для многомарщрутного процесса	10	Проверка решения
2	Расчёт равновесного состава реакционной смеси при реализации многомаршрутного процесса	10	Проверка решения
3	Расчет объема реактора периодического действия при проведении жидкофазного процесса	10	Проверка решения
3	Расчет периода работы реактора периодического действия при проведении жидкофазного процесса	10	Проверка решения
3	Расчёт каскада реакторов полного смешения при проведении жидкофазного процесса	10	Проверка решения

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине.

Методические указания для обучающихся по организации самостоятельной работы по дисциплине, включая перечень тем самостоятельной работы, формы текущего контроля по дисциплине и требования к их выполнению размещены в электронной информационно-образовательной среде СПбГТИ(ТУ) на сайте: http://media.technolog.edu.ru

6. Фонд оценочных средств для проведения промежуточной аттестации

Промежуточная аттестация по дисциплине проводится в формезачета.

Зачет предусматривают выборочную проверку освоения предусмотренных элементов компетенций и комплектуются вопросами (заданиями) двух видов: теоретическиезадания (для проверки знаний) и расчётное задания (для проверки умений и навыков).

При сдаче зачетаобучающийся получает три вопроса из банка вопросов (время на выполнение 10 минут) и расчётную задачу из перечня задач (время на выполнение 35 минут). Зачет проводится в компьютерном классе с использованием виртуальной среды обучения LMSMoodle.

Пример варианта вопросов назачете:

Вариант № 1

- 1. Определение «Лимитирующая стадия процесса»
- 2. Как изменяется равновесная степень превращения ключевого компонента при увеличении давления для реакции, идущей с увеличением объёма газообразных реагентов?
- 3. Как изменяется скорость обратимой реакции по мере её протекания?

Пример расчётного задания на зачете:

Вариант № 1

Рассчитать материальный баланс синтеза фосгена, протекающего по уравнению: $CO + C12 \leftrightarrow COC12$

Состав исходной смеси (мольные доли): Z0COC12 = 0.05; Z0CO = 0.3; Z0C12 = 0.3; остальное - инерт. Расход исходной газовой смеси составляет 37000 м3/ч. Остаточное содержание в конечной газовой смеси составляет CO- 0.04

Результаты освоения дисциплины считаются достигнутыми, если для всех элементов компетенций достигнут пороговый уровень освоения компетенции на данном этапе.

7. Перечень учебных изданий, необходимых для освоения дисциплины.

а) печатные издания:

1. Общая химическая технология: учебник для хим.-технол. спец. вузов. В 2-х ч./ под ред. И.П. Мухленова. — 5 изд. стер. -М.:Альянс, 2009.- Ч 1: Теоретические основы химической технологии.- 255с.

- 2. Общая химическая технология: учебник для хим.-технол. спец. вузов. В 2-х ч./ под ред. И.П. Мухленова. 5 изд., стер. -М.:Альянс, 2009.- Ч 2: Важнейшие химические производства.- 264с.
- 3. Власов, Е.А. Общая химическая технология: учеб. пособие / Е.А. Власов, А.Ю. Постнов, С.А. Лаврищева: под ред. Е.А. Власова; СПбГТИ(ТУ).-СПб., 2009.- 140 с.

б) электронные учебные издания:

- 4. Общая химическая технология. Основные концепции проектирования химикотехнологических систем: учебник для вузов по химико-технологическим направлениям подготовки и специальностям / И. М. Кузнецова [и др.]; под ред. Х. Э. Харлампиди. 2-е изд., перераб. Электрон. текстовые дан. СПб.; М.; Краснодар: Лань, 2014. 381 с. (ЭБС «Лань»)
- 5. Общая химическая технология. Методология проектирования химико-технологических процессов: учебник для вузов по химико-технологическим направлениям подготовки и специальностям / И. М.Кузнецова [и др.]; под ред. Х. Э. Харлампиди. 2-е изд., перераб. Электрон.текстовые дан. СПб.; М.; Краснодар: Лань, 2013. 448 с. (ЭБС «Лань»)
- 6. Постнов, А.Ю. Технологическая игра: энерготехнологическое комбинирование на примере мобильной установки получения синтез-газа: учебное пособие /А. Ю. Постнов, О.А. Черемисина; СПбГТИ(ТУ). Каф.общ. хим. технологии и катализа. Электрон.текстовые дан. СПб.:[б.и.], 2019.-43 с.

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

Учебный план, РПД и учебно-методические материалы: http://media.technolog.edu.ru

электронно-библиотечные системы:

«Электронный читальный зал – БиблиоТех» https://technolog.bibliotech.ru/; ЭБС «Лань» https://e.lanbook.com/books/.

9. Методические указания для обучающихся по освоению дисциплины.

Все виды занятий по дисциплине «Теоретические основы химической технологии» проводятся в соответствии с требованиями следующих СТП:

СТП СПбГТИ 040-02. КС УКДВ. Виды учебных занятий. Лекция. Общие требования;

СТО СПбГТИ 018-2014. КС УКДВ. Виды учебных занятий. Семинары и практические занятия. Общие требования к организации и проведению.

СТП СПбГТИ 048-2009. КС УКВД. Виды учебных занятий. Самостоятельная планируемая работа студентов. Общие требования к организации и проведению.

СТП СТО СПбГТИ(ТУ) 016-2015. КС УКВД Порядок проведения зачетов и экзаменов.

Планирование времени, необходимого на изучение данной дисциплины, лучше всего осуществлять на весь семестр, предусматривая при этом регулярное повторение пройденного материала.

Основными условиями правильной организации учебного процесса для студентов является:

плановость в организации учебной работы;

серьезное отношение к изучению материала;

постоянный самоконтроль.

На занятия студент должен приходить, имея знания по уже изученному материалу.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине.

10.1. Информационные технологии.

В учебном процессе по данной дисциплине предусмотрено использование информационных технологий:

чтение лекций с использованием слайд-презентаций;

взаимодействие с обучающимисяс использованием виртуальной среды обучения LMS Moodle.

10.2. Программное обеспечение.

Пакеты прикладных программ стандартного набора (LibreOffice, MathCAD);

10.3. Базы данных и информационные справочные системы.

Справочно-поисковая система «Консультант-Плюс» База данных REAXYS . www.reaxys.com

11. Материально-техническое обеспечениеосвоения дисциплиныв ходе реализации образовательной программы.

Кафедра Общей химической технологии и катализа оснащена необходимым научноисследовательским оборудованием, измерительными и вычислительными комплексами и другим материально-техническим обеспечением, необходимым для полноценного лабораторных работ, существует возможность использования оборудования Инжинирингового Центра и Лаборатории каталитических технологий Компьютеры кафедры(аудитории 205, 209, 210) соединены в локальную вычислительную сеть с выходом в Интернет через отдельный сервер, подключенный к сети института.

12. Особенности освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья.

Для инвалидов и лиц с ограниченными возможностями учебные процесс осуществляется в соответствии с Положением об организации учебного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья СПбГТИ(ТУ), утвержденным ректором 28.08.2014.

Фонд оценочных средств для проведения промежуточной аттестации по дисциплине «Теоретические основы химической технологии»

1. Перечень компетенций и этапов их формирования.

Индекс компетенции	Содержание	Этап формирования
ОПК-1	Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности	промежуточный

2. Показатели и критерии оценивания компетенций на различных этапах их формирования, шкала оценивания

Код и наименование индикатора достижения компетенции	Показатели сформированности (дескрипторы)	Критерий оценивания	Уровни сформированности (описание выраженности дескрипторов)	
			«зачет» (пороговый)	
ОПК-1.17 Использование методов математического моделирования, теоретического и экспериментального исследования при решении задач профессиональной деятельности	Знает: методики составления материальных и энергетических балансов реактора и химикотехнологической системы в целом (ЗН-1);	Ответы на вопросы № 1-16 к зачету	Записывает формулы для расчёта материальных и энергетических потоков, состава смесей, производительности, расходных коэффициентов	
	основные термодинамические характеристики химикотехнологического процесса (3H-2);	Ответы на вопросы № 21- 33 к зачету	Перечисляет основные термодинамические характеристики химикотехнологического процесса	
	перечень вариабильных кинетических характеристик химико-технологического процесса (3H-3);	Ответы на вопросы № 36- 50 к зачету	Перечисляет кинетические характеристики химико-технологического процесса	
	перечень управляющих параметров химикотехнологического процесса, влияющих на величину наблюдаемой скорости процесса (3H-4);	Ответы на вопросы № 51- 66 к зачету	Перечисляет параметры химико-технологического процесса, влияющие на величину наблюдаемой скорости процесса, выбирает рациональный диапазон изменения управляющих параметров	
	принципы построения математических моделей идеализированных реакторов (3H-5).	Ответы на вопросы № 69- 80 к зачету	Записывает формулы для расчёта объёма идеализированных реакторов	

	Умеетрассчитывать	Ответы на	Составляет материальный и энергетический баланс реактора
	материальные и энергетические балансы реактора и химикотехнологической системы в целом (У-1);	вопросы № 17- 19 к зачету Задачи 1-6	
	рассчитывать термодинамическую константу равновесия (У-2);	Ответы на вопросы № 34 к зачету Задачи 7-8	Рассчитывает термодинамическую константу равновесия по известным полиномиальным уравнениям и/или составляет уравнение для расчета по справочным данным.
	определять значения кинетических характеристик по результатам эксперимента (У-3);	Ответы на вопросы № 51 к зачету	По результатам обработки экспериментальных данных определяет значение энергии активации химической реакции и предэкспоненциального множителя уравнения Аррениуса
	рассчитывать скорость процесса (У-4);	Ответы на вопросы № 67 к зачету Задачи 9-10	Рассчитывает наблюдаемую скорость процесса в кинетической области
	рассчитывать необходимый объём идеализированного реактора (У-5)	Ответы на вопросы № 81 к зачету	Показывает закономерности изменения объёма идеализированного реактора в различных условиях при проведении модельной реакции
	Владеет навыками оптимизации структуры материальных и энергетических потоков по технико-экономическим критериям (H-1);	Ответы на вопросы № 20 к зачету	Выполняет процедуру определения рационального температурного режима работы реактора
	навыками расчёта равновесного состава реакционной смеси (H-2);	Ответы на вопросы № 35 к зачету Задачи 7-8	Рассчитывает равновесный состав реакционной смеси для единичной реакции при заданных значениях управляющих параметров
	навыками анализа	Ответы на	Показывает закономерности изменения кинетических характеристик химико-

КИ	инетических характеристик	вопросы № 52 к	технологического процесса
XV	имико-технологического	зачету	
пр	роцесса (Н-3);		
на	авыками управления	Ответы на	Анализирует влияние управляющих параметров на величину наблюдаемой
ск	коростью процесса (Н-4);	вопросы № 68 к	скорости процесса в кинетической области
		зачету	
на	авыками определения	Ответы на	Выбирает рациональный температурный диапазон работы реактора по
pa	ационального	вопросы № 82 к	результатам расчёта
те	емпературного режима	зачету	
pa	аботы идеализированного		
pe	еактора (Н-5)		

Шкала оценивания соответствует СТО СПбГТИ(ТУ):

По дисциплине промежуточная аттестация проводится в форме зачета, шкала оценивания – «зачтено» (если достигнут "пороговый" уровень освоения всех элементов компетенции), «не зачтено».

- 3. Типовые контрольные задания для проведения промежуточной аттестации
- а) Вопросы для оценки знаний, умений и навыков, сформированных у студента по компетенции ОПК-1:
- 1. Закон сохранения массы вещества
- 2. Закон сохранения энергии
- 3. Определение «Практический расходный коэффициент».
- 4. Как рассчитать тепловой эффект реакции?
- 5. Как рассчитать удельный тепловой эффект реакции по компоненту?
- 6. Определение «Интенсивность работы реактора»
- 7. Определение «Интегральная селективность».
- 8. Определение «Выход продукта».
- 9. Определение «Теоретический расходный коэффициент».
- 10. Определение «Степень превращения вещества»
- 11. Как изменяется температура в реакторе при проведении экзотермической обратимой реакции в адиабатическом температурном режиме?
- 12. Как изменяется температура в реакторе при проведении эндотермической обратимой реакции в адиабатическом температурном режиме
- 13. Как изменяется температура в реакторе при проведении эндотермической обратимой реакции в политермическом температурном режиме
- 14. Как изменяется температура в реакторе при проведении эндотермической обратимой реакции в изотермическом температурном режиме
- 15. Как изменяется температура в реакторе при проведении экзотермической обратимой реакции в политермическом температурном режиме
- 16. Как изменяется температура в реакторе при проведении экзотермической обратимой реакции в изотермическом температурном режиме
- 17. Написать уравнение для расчёта мольной доли компонента, если известна начальная мольная доля компонента и степень превращения ключевого компонента
- 18. Как рассчитать практический расходный коэффициент по сырью, если известен теоретический расходный коэффициент по ключевому компоненту, мольная доля ключевого компонента в сырье и его степень превращения
- 19. Как рассчитать производительность по ключевому компоненту, если известно начальное количество ключевого компонента и его степень превращения
- 20. При известных значениях величин материальных и энергетических потоков определить необходимость изменения температурного режима работы реактора для обеспечения требуемого температурного диапазона его функционирования
- 21. Как изменяется равновесная температура при увеличении давления для экзотермической обратимой реакции, идущей с уменьшением объёма газообразных реагентов
- 22. Как изменяется равновесная температура при увеличении давления для экзотермической обратимой реакции, идущей с увеличением объёма газообразных реагентов
- 23. Как изменяется равновесная температура при увеличении давления для экзотермической обратимой реакции, идущей без изменения объёма газообразных реагентов
- 24. Как изменяется равновесная температура при увеличении давления для эндотермической обратимой реакции, идущей с уменьшением объёма газообразных реагентов
- 25. Как изменяется равновесная температура при увеличении давления для эндотермической обратимой реакции, идущей с увеличением объёма газообразных реагентов

- 26. Как изменяется равновесная температура при увеличении давления для эндотермической обратимой реакции, идущей без изменения объёма газообразных реагентов
- 27. Как изменяется равновесная температура по мере протекания экзотермической обратимой реакции?
- 28. Как изменяется термодинамическая константа равновесия при увеличении температуры для экзотермической реакции?
- 29. Как изменяется термодинамическая константа равновесия при увеличении температуры для эндотермической реакции?
- 30. Как рассчитать величину равновесной температуры?
- 31. От каких управляющих параметров зависит термодинамическая константа равновесия
- 32. Уравнение закона Гесса
- 33. Уравнение изобары Вант-Гоффа
- 34. Используя известные термодинамические характеристики реакции рассчитать величину термодинамической константы равновесия для заданной температуры
- 35. Рассчитать равновесный состав реакционной смеси при известных значениях температуры, давления и исходного состава реакционной смеси
- 36. Как изменяется оптимальная температура по мере протекания обратимой экзотермической обратимой реакции?
- 37. Определение «Оптимальная температура процесса»
- 38. Как изменяется скорость обратимой реакции по мере её протекания?
- 39. Как изменяется оптимальная температура по мере протекания обратимой экзотермической обратимой реакции
- 40. Как изменяется оптимальная температура при увеличении давления для экзотермической обратимой реакции, идущей с уменьшением объёма газообразных реагентов
- 41. Как изменяется оптимальная температура при увеличении давления для экзотермической обратимой реакции, идущей с увеличением объёма газообразных реагентов
- 42. Как изменяется оптимальная температура при увеличении давления для экзотермической обратимой реакции, идущей без изменения объёма газообразных реагентов
- 43. Определение «Дифференциальная селективность».
- 44. Как изменяется скорость необратимой бимолекулярной реакции второго порядка при увеличении начальной мольной доли ключевого компонента
- 45. Как изменяется скорость необратимой мономолекулярной реакции первого порядка при увеличении начальной мольной доли исходного регента
- 46. Как изменяется скорость обратимой реакции по мере её протекания
- 47. Как изменяется скорость необратимой реакции по мере её протекания
- 48. Уравнение скорости необратимой реакции
- 49. Как рассчитать величину оптимальной температуры процесса?
- 50. Определение «Дифференциальная селективность».
- 51. По известным экспериментальным данным определить энергию активации, предэкспоненциальный множитель и порядок реакции
- 52. По результатам анализа кинетических характеристик предложить перечень управляющих параметров процесса, обеспечивающих достижение заданных показателей эффективности его протекания
- 53. Параметры управления химико-технологическим процессом, определяющие величину скорости в кинетической области
- 54. Влияние температуры на скорость обратимой экзотермической реакции.
- 55. Влияние температуры на скорость необратимой экзотермической реакции

- 56. Влияние температуры на скорость необратимой эндотермической реакции
- 57. Влияние температуры на скорость обратимой эндотермической реакции.
- 58. Влияние давления на скорость обратимой реакции, идущей с увеличением объёма газообразных реагентов
- 59. Влияние давления на скорость обратимой реакции, идущей с уменьшением объёма газообразных реагентов
- 60. Влияние температуры на величину дифференциальной селективности при проведении параллельных реакций
- 61. Влияние мольной доли ключевого компонента на величину дифференциальной селективности при проведении параллельных реакций
- 62. Влияние давления на скорость обратимой реакции, идущей без изменения объёма газообразных реагентов
- 63. Параметры управления химико-технологическим процессом, определяющие величину скорости в диффузионной области
- 64. Какое значение имеет порядок реакции по компоненту в диффузионной области?
- 65. Как перевести процесс из внешнедиффузионной области в кинетическую?
- 66. Как перевести процесс из внутридиффузионной области в кинетическую?
- 67. Рассчитать наблюдаемую скорость химико-технологического процесса по известному кинетическому уравнению при фиксированном значении управляющих параметров
- 68. Предложить и расчетным путём подтвердить рациональный диапазон изменения температуры, в котором обеспечивается необходимое увеличение скорости процесса
- 69. Определение «Нестационарное состояние»
- 70. Определение «Стационарное состояние»
- 71. Основные положения идеализированной модели идеального вытеснения
- 72. Основные положения идеализированной модели полного смешения
- 73. Уравнение материального баланса реактора идеального вытеснения
- 74. Уравнение материального баланса реактора полного смешения
- 75. Уравнение теплового баланса реактора идеального вытеснения в изотермическом температурном режиме
- 76. Уравнение теплового баланса реактора полного смешения в изотермическом температурном режиме
- 77. Уравнение теплового баланса реактора идеального вытеснения в адиабатическом температурном режиме
- 78. Уравнение теплового баланса реактора полного смешения в адиабатическом температурном режиме
- 79. Уравнение теплового баланса реактора идеального вытеснения в политермическом температурном режиме
- 80. Уравнение теплового баланса реактора полного смешения в политермическом температурном режиме
- 81. Для известного химико-технологического процесса рассчитать необходимый объём идеализированного реактора
- 82. Для известного химико-технологического процесса установить рациональный температурный режим работы реактора

б) Задачи для оценки умений и навыков, сформированных у студента по компетенции ОПК-1:

1. Рассчитать материальный баланс синтеза фосгена для фармацевтической промышленности, протекающего по уравнению: $CO + Cl_2 \leftrightarrow COCl_2$

Состав исходной смеси (мольные доли): $Z0_{COCl2} = 0.05$; $Z0_{CO} = 0.3$; $Z0_{Cl2} = 0.3$; остальное - инерт. Расход исходной газовой смеси составляет 37000 м3/ч. Остаточное содержание в конечной газовой смеси составляет CO- 0.04.

- 2. Рассчитать материальный баланс процесса разложения аммиака для получения водорода по уравнению: $2NH_3 \leftrightarrow 3H_2 + N_2 + \Delta H0$
- Состав исходной газовой смеси (мольные доли): $Z0_{NH3} = 0.35$; $Z0_{N2} = 0.05$; $Z0_{H2} = 0.03$; остальное метан. Расход аммиака составляет в начальной газовой смеси составляет 10 кг/ч. Остаточное содержание аммиака в конечной газовой смеси 0.02% (мольная доля).
- 3. Составить тепловой баланс процесса парциального окисления природного газа в изотермическом температурном режиме с использованием программного пакета MathCad, если: Расход природного газа на установку $5000000 \, \text{m}^3/\text{год}$

Температура в реакторе -1000°C. Состав природного газа (мольные доли): метан $CH_40,86$, этан C_2H_6 0,04, пропан C_3H_8 0,01, остальное азот. Соотношение природный газ-воздух=3:1

4. Составить тепловой баланс процесса паровой конверсии природного газа в изотермическом температурном режиме с использованием программного пакета MathCad, если известно: объемный расход природного газа на установку $3000000 \text{ м}^3/\text{год}$, температура в реакторе -900°C .

Состав природного газа (мольные доли): метан 0,86, этан 0,04, пропан 0,01, остальное азот, соотношение природный газ-водяной пар=1:3

5. Рассчитать материальный баланс реактора окисления оксида серы (4) , протекающего по уравнению: $2SO_2+O_2=2SO_3$.

На окисление диоксида серы пошло 4400 м³/ч кислорода. Концентрации компонентов в исходной смеси (объемные доли): оксид серы (IV) 0,11; кислород 0,1; остальное азот. Степень превращения диоксида серы составляет 0,89. Дополнительно рассчитать мольную производительность реактора.

Рассчитать температуру смеси на выходе из реактора, если температура входной смеси 390° С, потери тепла в окружающую среду составляют 2% от теплоты, поступающей с потоком исходных веществ, а с помощью теплообменных устройств отводят 20% теплоты химической реакции.

6. Рассчитать материальный баланс реактора синтеза метанола, протекающего по уравнению: $CO + 2H_2 \leftrightarrow CH_3OH$

Объемный расход исходной смеси 60000 м³/ч. Концентрации компонентов в исходной смеси (объемные доли): водород 0,72; оксид углерода (II) 0,18; метанол 0,01; остальное метан. В конечной смеси объемная доля метанола составляет 0,04. Дополнительно рассчитать степень превращения водорода.

Рассчитать количество теплоты, которое необходимо отвести из реактора, чтобы температура на выходе составляла 450° C. Температура входной смеси 300° C, потери тепла в окружающую среду составляют 2% от теплоты, поступающей с потоком исходных веществ.

7. Рассчитать равновесную степень превращения и равновесный состав газа, проанализировать влияние температуры и давления на состояние химического равновесия. По реакции: $H_2+J_{2(ras.)} \leftrightarrow 2HJ_{(ras)}$

Концентрации водорода, газообразного йода и йодистого водорода в исходной смеси равны, соответственно (мольные доли): $ZN_{J2} = 0.30$, $ZN_{H2} = 0.45$, $ZN_{HJ} = 0.05$, остальное –

Если зависимость константы равновесия от температуры представлена выражением:

 $\lg Kp = 302.4/T - 1.448 \cdot \lg(T) + 0.21 \cdot 10^{-3} \cdot T + 0.054 \cdot 10^{5}/T^{2} + 5.29.$

8. Рассчитать равновесную степень превращения и равновесные мольные доли компонентов реакционной смеси при проведении реакции

 $2Cl_2+2H_2O$ (г)=4HCl+O₂ при следующих исходных данных: состав исходной смеси (мольные доли): хлор – 0,3, водяной пар– 0,65, остальное – азот.

Зависимость константы равновесия от температуры:

 $lgKp = -6019,9/T + 0,423*lg(T) - 0,025*10^{-3}*T + 0,147*10^{5}/T^{2} + 5,672$

9. Рассчитать значения прямой, обратной и наблюдаемой скорости реакции конверсии монооксида углерода водяным паром: $CO+H_2O=CO_2+H_2$

Если исходный состав (мольные доли): монооксид углерода 0,15,

водяной пар 0,5, водород 0,1, диоксид углерода 0,05, остальное – азот.

Кинетическое уравнение паровой конверсии COU, [c-1]:

$$U = K_1 P_{CO} \cdot \left(\frac{P_{H_20}}{P_{H_2}} \right)^{0.5} - K_2 P_{CO_2} \cdot \left(\frac{P_{H_2}}{P_{H_20}} \right)^{0.5}$$

 $E1 = 40000 \text{ кДж/кмоль; } k_{01} = 2.03 \cdot 10^6.$

Зависимость константы равновесия от температуры:

 $lgKp = 2485.5/T + 1.565 \cdot lg(T) - 0.066 \cdot 10^{-3} \cdot T - 0.207 \cdot 10^{5}/T^{2} - 6.946$

10. Рассчитать значения прямой, обратной и наблюдаемой скорости реакции Дегидрирование бутана: $C_4H_{10} = C_4H_8 + H_2$

Если известно, что исходный состав (мольные доли): бутан 0,27, бутен 0,01, водород 0,01, остальное – азот.

Кинетическое уравнение, $M^3C_4H_{10}/M^3*c$:

 $U=k_{+}*(PC_{4}H_{10}/PC_{4}H_{8})*(1-PC_{4}H_{8}*PH_{2}/(PC_{4}H_{10}*Kp))$

Зависимость константы скорости прямой реакции от температуры:

 $lg(K_+)=-9050/T +9.6$

Зависимость константы равновесия от температуры:

lgKp = -6700/T + 7.574

При сдаче зачета обучающийся получает три вопроса из банка вопросов (время на выполнение 10 минут) и расчётную задачу из перечня задач (время на выполнение 35 минут). Зачет проводится в компьютерном классе с использованием виртуальной среды обучения LMSMoodle.

5.Методические материалы для определения процедур оценивания знаний, умений и навыков, характеризующих этапы формирования компетенций.

Промежуточная аттестация по дисциплине проводится в соответствии с требованиями СТП СТО СПбГТИ(ТУ) 016-2015. КС УКВД Порядок проведения зачетов и экзаменов.