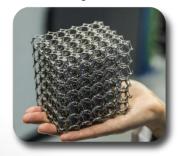

федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный технологический институт (технический университет)»

Кафедра радиационной технологии

Области применения радиационной технологии в промышленности и науке

Применение ионизирующих излучений


Медицина

Археология

Новые материалы

Изотопы

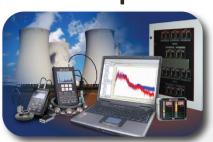
Ускорители

Синхронтроны

Ионизирующее излучение

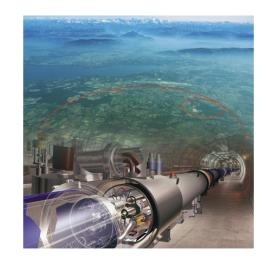
Продукты питания

Сельское хозяйство


Экология

Безопасность

Контроль



Ускорители заряженных частиц

Современный ускоритель — это «фабрика» по производству интенсивных пучков частиц — электронов или в 2000 раз более тяжелых протонов. Пучок частиц из ускорителя направляется на «мишень». При соударении с ней возникает множество разнообразных вторичных частиц. Рождение новых частиц и есть цель опытов.

С помощью коллайдера, например, проводятся эксперименты с целью воссоздания в лабораторных условиях Большого взрыва, с которого, как предполагается, началась наша Вселенная. Растут энергии заряженных частиц, и все глубже проникают физики в таинственный микромир, открывая неизвестные прежде явления природы.

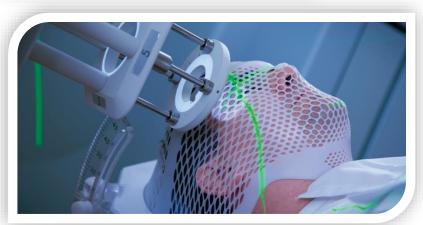
Могучий арсенал ускорительной техники берут на вооружение многие отрасли науки и производства. С помощью небольших циклических ускорителей — бетатронов — получают пучки электронов с энергией порядка 100 МэВ. Их используют для дефектоскопии в технике и лучевой терапии в медицине. Пучки быстрых ионов используются в полупроводниковой промышленности для создания электронных микросхем и т. д.

Производство радиоизотопов

Радионуклиды — нуклиды, ядра которых радиоактивны. В земной коре и океанских и морских водах находится ряд естественных долгоживущие радионуклидов (235U, 238U, 232Th и др.). Большинство же создается искусственно путем превращения стабильных нуклидов в нестабильные нуклиды с помощью бомбардирования их нейтронами. протонами, дейтеронами, α-частицами, γ-излучением и другими ядерными частицами.

Источником этих частиц могут быть радионуклиды, ядерные реакторы или различного типа ускорители. Большое разнообразие искусственно созданных радионуклидов способствовало прогрессу во многих приложениях физики, биологии, и конечно, медицине (в т. ч. радиофарм-препараты).

Радиационные технологии в медицине


- ◆ РЕНТГЕНОДИАГНОСТИКА
- ◆ БРАХИТЕРАПИЯ (Радиотерапия, в которой источник ионизирующего излучения (Ra-226, Ir-192, I-125, Cs-137, Co-60) вводится внутрь поражённого органа)
- ◆ЛУЧЕВАЯ ТЕРАПИЯ
- ♦ КТ (Рентгеновская компьютерная томография)
- ◆ПЭТ (Позитронная эмиссионная томография)

Радиационные технологии в медицине

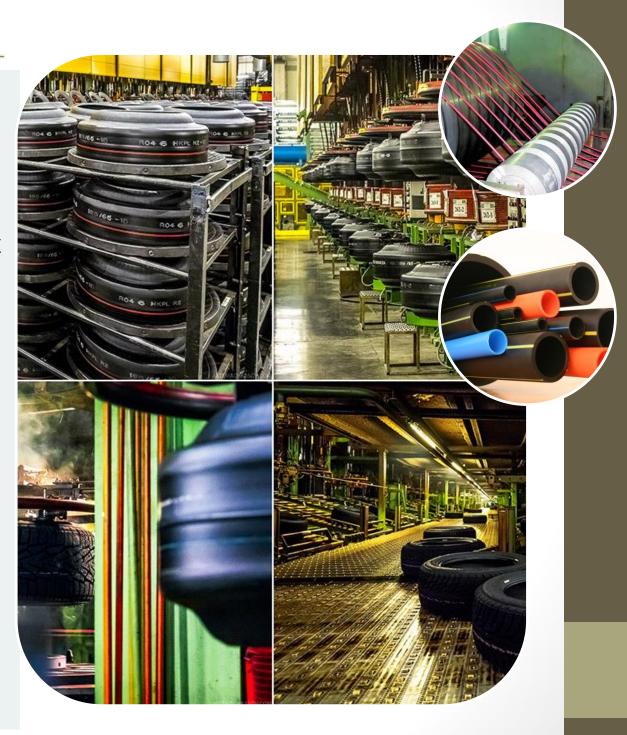
- ◆ РАДИОНУКЛИДНАЯ ТЕРАПИЯ
- ОЭКТ (Однофотонная эмиссионная компьютерная томография)
- ◆ РАДИОИММУННЫЙ АНАЛИЗ
- ◆ РАДИОХИРУРГИЯ
- ◆ СЦИНТИГРАФИЯ (Метод функциональной визуализации, заключающийся во введении в организм радиоактивных изотопов и получении изображения путём регистрации испускаемого ими излучения)

Радиактивное облучение продуктов питания

Исследования в области радиационной генетики и радиационной селекции дали около сотни новых разновидностей высокоурожайных культурных растений, устойчивых к различным заболеваниям. Так выведены ценные сорта пшеницы, фасоли и других культур.

Облучение семян растений (капусты, редиса и др.) небольшими дозами ү-лучей от радиоактивных препаратов приводит к заметному увелечению урожайности.

Радиактивное облучение продуктов питания



Обработка продуктов питания с помощью ионизирующего излучения — один из высокоэффективных методов дезинфекции, который позволяет снизить содержание в сырье или готовой продукции патогенных микроорганизмов, личинок вредных насекомых, подавить прорастание корнеплодов и заметно продлить срок годности скоропортящихся продуктов.

Радиационная модификация полимеров

Радиационное модифицирование материалов

— это направленное полезное изменение их свойств в результате облучения. Наиболее часто ионизирующее излучение применяется для модификации полимеров, поскольку вследствие высокой молекулярной массы полимера даже сравнительно небольшие дозы могут вызвать существенное изменение его свойств.

Радиационная модификация полимеров

Сшивание используется в разнообразных промышленных процессах:

1

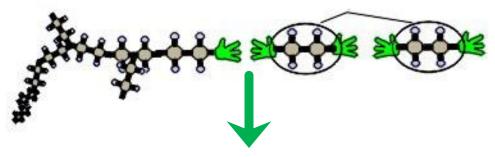
• Модифицирование полиолефиновой (преимущественно полиэтиленовой и поливинилхлоридной) изоляции кабелей и проводов.

2

• Изготовление упрочненных и термоусаживающихся пленок, трубок и получение пенопропилена.

3

• Вулканизация эластомеров и изделий из них (компонентов шин, каучуков с целью изготовления на их основе термостойких самослипающихся электроизоляционных лент и резино-стекло-ткани, латекса на основе натурального каучука, резиновых перчаток и др.).


Изделия, изготовленные таким способом, находят широкое применение в нефтегазовой, электротехнической, автомобильной и пищевой промышленности, судостроении и других отраслях.

Радиационная полимеризация мономеров

Радиационная полимеризация — наиболее перспективный и легко управляемый радиационно-химический процесс, протекающий в газовой, жидкой или твердой фазах. Под действием излучений высокой энергии (α-, β-частиц, γ-излучений, ускоренных электронов) и практически вне зависимости от температуры в мономере создаются активные центры, инициирующие реакцию. Таким способом получают полимерные материалы высокой степени чистоты, что особенно важно для применения их в радиоэлектронике и медицине.

Полиэтилен

Мономеры этилена

Полимеризация

Молекула состоит из 160 000 – 210 000 мономеров

Для ряда полимеров РХП полимеризации являются единственно возможным методом синтеза. В настоящее время успешно применяются методы радиационной полимеризации этилена, триоксана, акриламида, а также процессы сополимеризации этилена с винилхлоридом, тетрафторэтиленом и др.

Радиационная полимеризация мономеров

Области применения:

радиационное отверждение полимерных покрытий;

изготовление оптических изделий;

радиационно-химическое производство древесно-пластмассовых и бетонополимерных материалов;

синтез полимерных сорбентов путем радиационной прививочной полимеризации мономеров и т.д.

Радиобиология

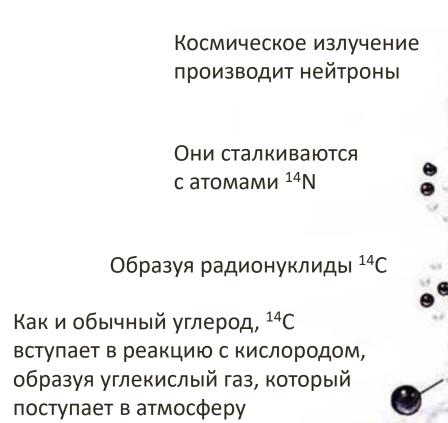
Радиобиология — это раздел радиологии, изучающий действие ионизирующих излучений на живые организмы. Поскольку радиобиология включает изучение действия радиации на различных уровнях (субклеточном, клеточном, целого организма, его систем, органов и тканей), возникли три основных ее раздела:

общая радио-биология (изучение зависимости эффекта от дозы, от распределения дозы во времени, от вида и пространственного распределения излучения и т. д.)

теоретические основы первичного биологического действия излучения

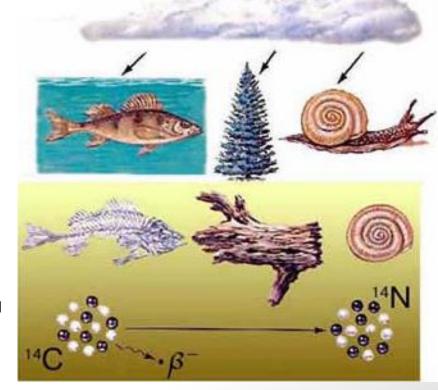
функциональные и структурные характеристики лучевых реакций (радиационная патофизиология, патоморфология, биохимия, микробиология и т. д.)

Археология и искусство


Радиоуглеродное датирование — объектами его использования могут быть углеродосодержащие материалы, в том числе остатки костной ткани любого возраста, растительной ткани или результаты их биохимической эволюции: древесный угль, нефть, газ, янтарь. Для проведения анализа необходимы малые массы. Метод позволяет установить возраст предметов, имеющих биологическую природу, с точностью 50 лет в диапазоне 1000 – 50 000 лет.

Наиболее интересные и важные примеры — датирование Туринской плащаницы, рукописей Мёртвого моря, наскальных рисунков в пещерах Франции и Испании, древнейших в мире стоянок с керамикой и земледелием.

В датировании древних памятников не обошлось без разоблачения подделок. Проводить серьёзные археологические работы без применения радиоуглеродного датирования в настоящее время невозможно.


Археология и искусство

¹⁴С проникает в океан и на сушу, накапливается в тканях растений и животных

Умершие организмы не накапливают ¹⁴С. Содержищийся в них ¹⁴С подвергается радиоактивному распаду и вновь превращается в ¹⁴N.

Измерение концентрации ¹⁴С в образце и сравнение с его исходным содержанием позволяет вычислить возраст.

Археология и искусство

Рентгенограмма произведений искусства позволяет:

- Понять принципы построения красочного слоя, особенности грунта, способ нанесения мазка и другие авторские приемы, которые являются индивидуальными у каждого художника.
- Увидеть авторские правки и изменения композиции.
- Обнаружить нижележащий красочный слой, если такой есть.
- Определить степень реставрации (если она была), разрушенные участки, утраты, а также перевод произведения на другую основу (если реставрация требуется).
- Определить некоторые живописные материалы.

Таким образом рентгенограмма помогает подтвердить или определить авторство, а также время создания произведения.

Экология

Радиационная очистка сточных вод имеет ряд важных достоинств: универсальность, одностадийность, малая чувствительность к изменению состояния сточных вод, отсутствие химических реактивов и отходов, нуждающихся в дополнительной переработке.

Одним из перспективных методов **дезинфекции или очистки питьевой воды** является радиационная обработка. Она сочетает высокую эффективность с экологической безопасностью, поскольку предполагает полный отказ от использования реагентов.

Радиационное обеззараживание отходов лечебных учреждений представляет собой разновидность радиационной стерилизации с более жесткими условиями облучения. Оно позволяет не допустить распространения таких заболеваний, как гепатит, ВИЧ-инфекции и др. заболевания.

Радиационная стерилизация

Преимущества радиационной стерилизации по сравнению с другими методами стерилизации:

- ❖ более высокая степень инактивации микроорганизмов;
- обработка изделий в конечной транспортной упаковке (изделия сохраняют стерильность в течение более длительного срока);
- ❖ возможность обработки изделий из термолабильных материалов;
- ❖ безопасность процесса и обработанных изделий;
- стерилизация изделий осуществляется, когда они уже помещены в герметичные упаковки, что обеспечивает длительные сроки сохранения стерильности;
- ❖ упаковки с облучёнными электронным пучком изделиями не содержат канцерогенных веществ, как при газовой стерилизации;
- изделия можно использовать сразу после облучения;
- ❖ изделия при облучении незначительно нагреваются и не намокают;
- безопасность изделий и процесса.

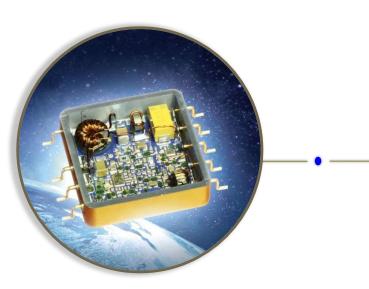
Радиационная стерилизация

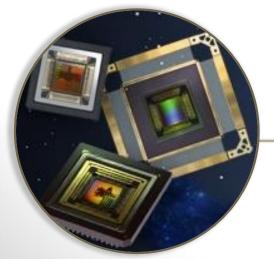
МЕДИЦИНА

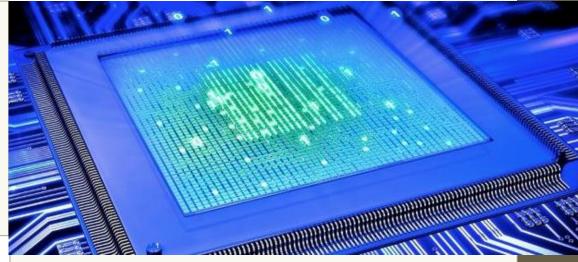
Стерилизация медицинских изделии и материалов. Обеспечение стерильности без нагрева изделий и сквозь упаковку, что повышает качество продукции. Экологическая чистота производства.

КОСМЕТИКА

Уменьшение микробной обсемененности косметики и ингредиентов, используемых в косметическом производстве. Доведение продукции до соответствия требованиям.


ПИЩЕВАЯ ПРОМЫШ-ЛЕННОСТЬ Ликвидация патогенной микрофлоры. Увеличение сроков хранения и реализации продукции без применения консервантов, существенное уменьшение потерь и высокий экономический эффект.


СЕЛЬСКОЕ ХОЗЯЙСТВО Радиационная обработка для дезинфекции и дезинсекции сельскохозяйственной продукции. Ликвидация патогенной микрофлоры, содержащейся в кормах для животных.


Радиационная стойкость материалов

Радиационная стойкость —

это способность материалов сохранять исходный химический состав, структуру и свойства в процессе и (или) после воздействия ионизирующих излучений (ИИ).

В связи с активным развитием ядерной промышленности, космонавтики, степени сложности и количества летательных аппаратов, проблема радиационной стойкости электронных компонентов становится все более актуальной. Несмотря на то, что современные методы защиты электроники от ионизирующего излучения на данном этапе позволяют эффективно справляться с этой проблемой, экономическая составляющая реализации этих методов во многом сдерживает развитие космической программы.

Радиационная стойкость материалов

Мобильная аппаратура контроля МАК-1

Аппаратура и оборудование для атомной промыш-ленности

Преобразователи и сигнализаторы давления радиацинно-стойкие

Аппаратура контроля нейтронно-физических параметров

Система оперативной диагностики (СОД)