

минобрнауки россии

федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный технологический институт (технический университет)» (СПбГТИ(ТУ))

УТВЕРЖДАЮ

Ректор

А.П. Шевчик

« 29 »

2022 г.

Программа кандидатского экзамена

2.6.6. Нанотехнологии и наноматериалы

ЛИСТ СОГЛАСОВАНИЯ

Разработчик (ученая степень, ученое звание, должность)	Подпись	Фамилия, инициалы
Зав.каф. теоретических основ материаловедения, д.т.н., профессор		Сычев М.М.

Программа кандидатского экзамена обсуждена на заседании кафедры теоретических основ материаловедения протокол N04 от (20)0 января 2022 г.

Зав. кафедрой теоретических основ материаловедения

М.М. Сычев

Одобрено учебно-методической комиссией механического факультета,

протокол от «15» февраля 2022 г. № 7.

Председатель А.Н. Луцко

СОГЛАСОВАНО

Проректор по научной работе	А.В. Гарабаджиу
Директор библиотеки	Т.Н. Старостенко
Начальник отдела аспирантуры и докторантуры	О.Н. Еронько

Введение

Настоящая программа кандидатского экзамена разработана для научной специальности 2.6.6. Нанотехнологии и наноматериалы.

Экзаменующийся должен показать высокий уровень теоретической и профессиональной подготовки, знание общих концепций и методологических вопросов научной специальности, истории ее формирования и развития, глубокое понимание основных разделов теории и практики изученного материала, а также умение применять свои знания для решения исследовательских и прикладных задач.

Настоящая программа составлена на кафедре теоретических основ материаловедения Санкт-Петербургского государственного технологического института (технического университета) в соответствии с требованиями, предъявляемыми к уровню владения теоретическим материалом, терминологической подготовленности и степени освоения дисциплины «Нанотехнологии и наноматериалы».

1. Порядок проведения кандидатского экзамена

Проведение кандидатского экзамена осуществляется в форме открытого заседания экзаменационной комиссии. Кандидатский экзамен проводится в устной форме.

Аспиранты с ограниченными возможностями здоровья могут сдавать данный экзамен, как в устной форме, так и в письменной форме.

Экзаменационные билеты должны включать два вопроса из программы кандидатского экзамена по специальности и один вопрос из дополнительной программы, которая составляется аспирантом (соискателем) совместно с научным руководителем в соответствии с темой диссертационной работы соискателя и рассматривается на заседании кафедры.

Для подготовки к ответу аспиранту отводится не более 60 минут, а на ответ – не более 30 минут. При ответе на вопросы экзаменационного билета члены экзаменационной комиссии могут задавать дополнительные вопросы аспиранту только в рамках содержания вопросов экзаменационного билета.

Во время заседания экзаменационной комиссии ведётся протокол в соответствии с установленным образцом.

Решение экзаменационной комиссии принимается на закрытом заседании простым большинством голосов членов комиссии. Уровень знаний оценивается на "отлично", "хорошо", "удовлетворительно", "неудовлетворительно".

Результаты экзамена оформляются протоколом и объявляются всем аспирантам группы в тот же день после завершения сдачи кандидатского экзамена.

Все прочие необходимые условия приема кандидатского экзамена изложены в нормативных документах (локальных актах) СПбГТИ(ТУ).

2. Основное содержание программы кандидатского экзамена

- 1. Предмет, цели и основные направления в нанотехнологии. Возникновение и развитие нанотехнологии. Современный уровень развития нанотехнологий.
- 2. Классификация наноматериалов и общие подходы к их получению. Подходы сверху вниз и снизу вверх. Физические и химические методы.
- 3. Размерные эффекты в химии и физической химии. Размерные эффекты в твердых телах. Влияние наноразмерного состояния материалов на их электрические, магнитные, оптические и др. свойства.
- 4. Электродуговое распыление графита. Лазерное испарение графита. Метод химического осаждения из пара.
- 5. Золь-гель синтез.
- 6. Аэрогели. Аэрозоли. Коллоидные наносистемы. Пленки Лэнгмюра-Блоджетт.

- 7. Получение наноструктур методами молекулярной химической сборки. Молекулярное наслаивание.
- 8. Нанопластины, наностержни, нановолокна, нанотрубки, фуллерены.
- 9. Наноструктурные и нанопористые материалы. Нанокомпозиты. Наноструктуры на основе пористых матриц. Нанопорошки. Метод химического осаждения из пара. Ультрадисперсные алмазы.
- 10. Теория квантово-размерных наногетероструктур. Квантовые точки.
- 11. Теория фракталов. Фрактальные свойства наноматериалов.
- 12. Поверхность раздела фаз. Свободная поверхностная энергия, поверхностное натяжение, избыточные термодинамические функции поверхностного слоя.
- 13. Структура поверхностного слоя как фактор, определяющий наноразмерные эффекты. Поверхностные состояния и активные центры функциональные группы на поверхности твердых тел.
- 14. Реакционная способность наночастиц. Свойства и характеристики поверхности материалов. Методы исследования поверхности. Методы модифицирования поверхности.
- 15. Взаимодействие между компонентами в нанокомпозитах.
- 16. Микроскопия, электронный микроскоп. Растровая электронная, ионная и ОЖЕмикроскопия.
- 17. Анализ поверхностного слоя материалов методом рентгенофотоэлектронной спектроскопии (РФЭС). Спектроскопические методы анализа наноматериалов.
- 18. Спектроскопия ядерного магнитного резонанса и электронного парамагнитного резонанса.
- 19. Методы исследования наноматериалов с использованием нейтронов и рентгеновского излучения. Метод дифракции рентгеновских лучей. Малоугловое рассеяние нейтронов и рентгеновских лучей. Рефлектометрия. Рентгеновское поглощение: ближняя тонкая структура (XANES) и дальняя тонкая структура (EXAFS).
- 20. Туннельный эффект и его использование в нанотехнологии. Сканирующая зондовая микроскопия. Сканирующий туннельный микроскоп; принцип работы, устройство и возможности использования.
- 21. Атомно-силовой микроскоп; принцип работы, устройство и возможности использования. Типы кантилеверов. Сканирующий оптический микроскоп ближнего поля. Наноиндентор. Сканирующие зондовые лаборатории. Нановесы.
- 22. Исследование электрических свойств наноматериалов. Емкостная спектроскопия. Контроль характеристик нанослоев и нанопокрытий. Эллипсометрия.
- 23. Моделирование наноструктур.
- 24. Нанотехнологии. Современный уровень развития нанотехнологий. Перспективные направления развития нанотехнологий в технике, промышленности, медицине.
- 25. Применение особых свойств наноматериалов в оптике, фотонике, светотехнике, при создании конструкционных материалов. Наноструктурированная керамика. Стекло с квантовыми точками. Наноструктурированные металлы и сплавы.
- 26. Наноматериалы для применения в области электроники, средств отображения информации, светотехники и оптоэлектроники. Светодиоды как элементы нанотехнологии, их устройство, параметры и перспективы использования в светотехнике.
- 27. Перспективные методы наносборки. Аддитивные технологии. Получение наноструктур методами молекулярной химической сборки.
- Перспективные направления развития нанотехнологий технике, Отношение промышленности, медицине. обшества нанотехнологиям. Связь К нанотехнологий проблемами окружающей c среды энергетики. Будущее И нанотехнологий: проблемы и перспективы.

3. Примерный перечень экзаменационных вопросов

- 1. Предмет, цели и основные направления в нанотехнологии. Возникновение и развитие нанотехнологии. Современный уровень развития нанотехнологий.
- 2. Классификация наноматериалов и общие подходы к их получению. Подходы сверху вниз и снизу вверх. Физические и химические методы.
- 3. Размерные эффекты в химии и физической химии. Размерные эффекты в твердых телах. Влияние наноразмерного состояния материалов на их электрические, магнитные, оптические и др. свойства.
- 4. Нанопорошки. Электродуговое распыление графита. Лазерное испарение графита. Метод химического осаждения из пара.
- 5. Золь-гель синтез.
- 6. Аэрогели. Аэрозоли. Коллоидные наносистемы. Пленки Лэнгмюра-Блоджетт.
- 7. Получение наноструктур методами молекулярной химической сборки. Молекулярное наслаивание.
- 8. Нанопластины, наностержни, нановолокна, нанотрубки, фуллерены, ультрадисперсные алмазы.
- 9. Наноструктурные и нанопористые материалы. Нанокомпозиты. Наноструктуры на основе пористых матриц.
- 10. Метод химического осаждения из пара.
- 11. Теория квантово-размерных наногетероструктур. Квантовые точки.
- 12. Теория фракталов. Фрактальные свойства наноматериалов.
- 13. Поверхность раздела фаз. Свободная поверхностная энергия, поверхностное натяжение, избыточные термодинамические функции поверхностного слоя.
- 14. Структура поверхностного слоя как фактор, определяющий наноразмерные эффекты. Поверхностные состояния и активные центры функциональные группы на поверхности твердых тел.
- 15. Реакционная способность наночастиц. Свойства и характеристики поверхности материалов.
- 16. Методы исследования поверхности.
- 17. Методы модифицирования поверхности.
- 18. Взаимодействие между компонентами в нанокомпозитах.
- 19. Микроскопия, электронный микроскоп. Растровая электронная, ионная и ОЖЕмикроскопия.
- 20. Анализ поверхностного слоя материалов методом рентгенофотоэлектронной спектроскопии (РФЭС). Спектроскопические методы анализа наноматериалов.
- 21. Спектроскопия ядерного магнитного резонанса и электронного парамагнитного резонанса.
- 22. Методы исследования наноматериалов с использованием нейтронов и рентгеновского излучения. Метод дифракции рентгеновских лучей.
- 23. Малоугловое рассеяние нейтронов и рентгеновских лучей. Рефлектометрия.
- 24. Рентгеновское поглощение: ближняя тонкая структура (XANES) и дальняя тонкая структура (EXAFS).
- 25. Туннельный эффект и его использование в нанотехнологии. Сканирующая зондовая микроскопия. Сканирующий туннельный микроскоп; принцип работы, устройство и возможности использования.
- 26. Атомно-силовой микроскоп; принцип работы, устройство и возможности использования. Типы кантилеверов.
- 27. Сканирующий оптический микроскоп ближнего поля. Наноиндентор. Сканирующие зондовые лаборатории. Нановесы.
- 28. Исследование электрических свойств наноматериалов. Емкостная спектроскопия. Контроль характеристик нанослоев и нанопокрытий. Эллипсометрия.

- 29. Моделирование наноструктур.
- 30. Нанотехнологии. Современный уровень развития нанотехнологий. Перспективные направления развития нанотехнологий в технике, промышленности, медицине.
- 31. Применение особых свойств наноматериалов в оптике, фотонике, светотехнике, при создании конструкционных материалов.
- 32. Наноструктурированная керамика.
- 33. Стекло с квантовыми точками.
- 34. Наноструктурированные металлы и сплавы.
- 35. Наноматериалы для применения в области электроники, средств отображения информации, светотехники и оптоэлектроники. Светодиоды как элементы нанотехнологии, их устройство, параметры и перспективы использования в светотехнике.
- 36. Перспективные методы наносборки. Аддитивные технологии.
- 37. Получение наноструктур методами молекулярной химической сборки.
- 38. Перспективные направления развития нанотехнологий в технике, промышленности, медицине. Отношение общества к нанотехнологиям.
- 39. Связь нанотехнологий с проблемами окружающей среды и энергетики. Будущее нанотехнологий: проблемы и перспективы.

4. Рекомендуемая литература

а) печатные издания

- 1. Основы нанотехнологии: учебник для вузов по направлению 211000 "Конструирование и технология электронных средств"/ Н. Т. Кузнецов, В.М. Новоторцев, В.А. Жабрев, В.И. Марголин. Москва: БИНОМ. Лаборатория знаний, 2014. 397 с. ISBN 978-5-9963-0853-8.
- 2. Научные основы нанотехнологий и новые приборы: Учебник-монография/ под ред. Р. Келсалла и др., пер. с англ. А. Д. Калашникова. Долгопрудный: Интеллект, 2011. 527 с. ISBN 978-5-91559-048-8.
- 3. Детонационные наноалмазы. Технология, структура, свойства и применения / Под ред.: А. Я. Вуля и О. А. Шендеровой. Санкт-Петербург: Изд-во ФТИ им. А. Ф. Иоффе, 2016. 384 с. ISBN 978-5-93634-025-2.
- 4. Бёккер, Ю. Спектроскопия / Ю. Бёккер; пер. с нем. Л. Н. Казанцевой, под ред. А. А. Пупышева, М. В. Поляковой. М.: Техносфера, 2009. 527 с. ISBN 978-5-94836-220-5
- 5. Ролдугин, В. И. Физикохимия поверхности: Учебник-монография / В. И. Ролдугин. Долгопрудный: Интеллект, 2008. 565 с. ISBN 978-5-91559-008-2.

б) электронные издания

- 1. Раков, Э.Г. Неорганические наноматериалы: учебное пособие для вузов по спец. "Химическая технология материалов современной энергетики" / Э. Г. Раков. 3-е изд., электронное. Москва: Лаборатория знаний, 2020. 480 с. ISBN 978-5-00101-741-7: // Лань: электронно-библиотечная система. URL: https://e.lanbook.com (дата обращения: 10.03.2020). Режим доступа: по подписке.
- 2. Наноматериалы. Свойства и сферы применения: Учебник / Г. И. Джардималиева, К. А. Кыдралиева, А. В. Метелица, И. Е Уфлянд. Санкт-Петербург [и др.]: Лань, 2021. 200 с. ISBN 978-5-8114-7884-2// Лань: электронно-библиотечная система. URL: https://e.lanbook.com (дата обращения: 10.01.2022). Режим доступа: по подписке.
- 3. Нано- и биокомпозиты / Под ред. А. К.-Т. Лау [и др.]; пер. с англ. И. Ю. Горбуновой, Т. П. Мосоловой; Под общ. ред. И. Ю. Горбуновой. 2-е изд., электронное. Москва: Лаборатория знаний, 2020. 393 с. ISBN 978-5-00101-727-1 // Лань: электронно-библиотечная система. URL: https://e.lanbook.com (дата обращения: 10.03.2020). Режим доступа: по подписке.
- 4. Рыжонков, Д.И. Наноматериалы: Учебное пособие / Д. И. Рыжонков, В. В. Лёвина, Э. Л. Дзидзигури. 6-е изд. (электронное). Москва: Лаборатория знаний, 2021. 368 с. ISBN 978-5-93208-550-9: б. ц. // Лань: электронно-библиотечная система. URL: https://e.lanbook.com (дата обращения: 10.01.2022). Режим доступа: по подписке.
- 5. Основы нанотехнологии: учебник для вузов по направлению 211000 "Конструирование и технология электронных средств" / [Н. Т. Кузнецов и др.]. 2-е изд. (электронное). Москва: Лаборатория знаний, 2021. 400 с. ISBN 978-5-906828-26-2: б. ц. // Лань: электронно-библиотечная система. URL: https://e.lanbook.com (дата обращения: 10.01.2022). Режим доступа: по подписке.
- 6. Растровая электронная микроскопия для нанотехнологий. Методы и применение / Под ред. У. Жу, Ж. Л. Уанга; пер. с англ. С. А. Иванова, К. И. Домкина; под ред. Т. П. Каминской. 3-е изд. (электрон.). Москва: Лаборатория знаний, 2021. 600 с. ISBN 978-5-00101-142-2: б. ц. // Лань: электронно-библиотечная система. URL: https://e.lanbook.com (дата обращения: 10.01.2022). Режим доступа: по подписке.
- 7. Орданьян, С.С. Проектирование состава, структуры и свойств керамических конструкционных наноматериалов: учебное пособие / С. С. Орданьян, А. Е. Кравчик; Министерство образования и науки Российской Федерации, Санкт-Петербургский

государственный технологический институт (технический университет), Кафедра химической технологии тонкой технической керамики. — Санкт-Петербург : СПбГТИ(ТУ), [б. и.], 2014. - 86 с. // СПбГТИ. Электронная библиотека. - URL: https://technolog.bibliotech.ru (дата обращения: 04.06.2020). - Режим доступа: для зарегистрир. пользователей.

в) программное обеспечение и Интернет-ресурсы:

- 1. Библиотека Санкт-Петербургского государственного технологического института (технического университета) университета http://bibl.lti-gti.ru
- 2. Российская государственная библиотека www.rsl.ru
- 3. Российская национальная библиотека www.nlr.ru
- 4. Библиотека Академии наук www.rasl.ru
- 5. Библиотека по естественным наукам PAH <u>www.benran.ru</u>
- 6. Всероссийский институт научной и технической информации (ВИНИТИ) www.viniti.ru
- 7. Государственная публичная научно-техническая библиотека www.gpntb.ru
- 8. Научная электронная библиотека eLIBRARY.RU elibrary.ru
- 9. Реферативная база данных научных публикаций Web of Science webofknowledge.com
- 10. Электронно-библиотечная система "Лань" http://e.lanbook.com
- 11. Программа для расчета термодинамических параметров химических реакций IVTANTHERMO