На правах рукописи

Албади Ямен

ФОРМИРОВАНИЕ, ФИЗИКО-ХИМИЧЕСКИЕ И МРТ-КОНТРАСТНЫЕ СВОЙСТВА НАНОКРИСТАЛЛИЧЕСКОГО ОРТОФЕРРИТА ГАДОЛИНИЯ

1.4.4. Физическая химия

АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата химических наук

Санкт-Петербург – 2024

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего образования «Санкт-Петербургский государственный технологический институт (технический университет)».

Научный руководитель	кандидат химических наук, доцент Попков Вадим Игоревич			
Официальные оппоненты	Зверева Ирина Алексеевна, доктор химиче- ских наук, профессор, федеральное государ- ственное бюджетное образовательное учрежде- ние высшего образования «Санкт-Петербург- ский государственный университет», профессор кафедры химической термодинамики и кине- тики института химии			
	Киселева Татьяна Юрьевна, доктор физико- математических наук, федеральное государ- ственное бюджетное образовательное учрежде- ние высшего образования «Московский государ- ственный университет имени М. В. Ломоно- сова», доцент кафедры физики твёрдого тела физического факультета			
Ведущая организация	Федеральное государственное бюджетное учре- ждение науки Институт химии твёрдого тела Уральского отделения Российской академии			

Защита состоится 2 октября 2024 года в 15 часов 30 минут на заседании диссертационного совета 24.2.383.02, созданного на базе федерального государственного бюджетного образовательного учреждения высшего образования «Санкт-Петербургский государственный технологический институт (технический университет)», по адресу: 190013, Россия, Санкт-Петербург, Московский проспект, дом 24–26/49 литера А, Белоколонный зал.

наук (ИХТТ УрО РАН)

С диссертацией можно ознакомиться в библиотеке и на сайте Санкт-Петербургского государственного технологического института (технического университета) по ссылке: <u>https://technolog.edu.ru/filecat/493</u>

Отзывы на автореферат в двух экземплярах, заверенные печатью, просим отправлять по адресу: 190013, Россия, Санкт-Петербург, Московский проспект, дом 24–26/49 литера А, Санкт-Петербургский государственный технологический институт (технический университет), Учёный совет, e-mail: <u>dissowet@technolog.edu.ru</u>

Автореферат разослан

2024 года.

Учёный секретарь диссертационного совета

кандидат технических наук Воронков Михаил Евгеньевич

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования

Контрастные вещества для магнитно-резонансной томографии (MPT) это вещества, используемые для усиления контраста аномальных тканей по сравнению с нормальными за счёт уменьшения времён релаксации протонов воды. T₁- или позитивные контрастные вещества сокращают время продольной релаксации T_1 , в результате чего интенсивность сигнала на T_1 -взвешенных изображениях увеличивается, а поражённые участки кажутся ярче, тогда как T₂- или негативные контрастные вещества сокращают время поперечной релаксации Т₂ и, как следствие, интенсивность сигнала на T_2 -взвешенных изображениях уменьшается, а поражённые участки кажутся темнее. Однако одномодальные контрастные вещества, оказывающие более выраженное действие на T_1 или T_2 , не всегда обеспечивают высокую точность анатомических деталей, что отличает их от $T_1 - T_2$ -двухмодальных контрастных веществ, которые могут проявлять позитивный и негативный контрасты в рамках одного МРТ-исследования и, таким образом, повышать чёткость изображения и улучшать диагностику. Поэтому разработка T₁-T₂-двухмодальных МРТ-контрастных веществ имеет научное и практическое значение.

Перспективной основой таких веществ является нанокристаллический ортоферрит гадолиния (GdFeO₃), поскольку его ромбическая перовскитоподобная структура содержит гадолиний, который входит в состав T_1 -контрастных веществ, и оксид железа, который используется как T_2 -контрастное вещество в виде наночастиц. Однако, чтобы достичь T_1 - T_2 -двухмодального контрастного эффекта, нанокристаллы GdFeO₃ должны быть достаточно малы: по мере уменьшения размера частиц удельная поверхность нанокристаллов GdFeO₃ увеличивается и, следовательно, больше катионов Gd³⁺ располагается вблизи поверхности, что необходимо для эффективной T_1 -релаксации; также уменьшение размера частиц ниже определённого значения приводит к достижению суперпарамагнитного состояния нанокристаллов GdFeO₃ при комнатной температуре, что играет важную роль в проявлении T_2 -контрастных свойств.

Для получения нанокристаллов $GdFeO_3$ можно использовать различные методы синтеза, среди которых предпочтительным является метод соосаждения, поскольку он позволяет синтезировать нанокристаллы $GdFeO_3$ с минимальными химическими примесями. Однако при синтезе нанокристаллов $GdFeO_3$ методом соосаждения существует множество условий, таких как методика соосаждения, температура растворов реагентов, концентрации катионов металлов и др., которые могут влиять на структурные, дисперсные и морфологические характеристики соосаждённых гидроксидов и, следовательно, нанокристаллов $GdFeO_3$, образующихся после их термообработки, что, в свою очередь, может влиять на их магнитные и MPT-контрастные свойства. Поэтому актуальным является изучение влияния условий соосаждения на физико-химические характеристики и функциональные свойства образующихся нанокристаллов GdFeO₃ и разработка новых подходов к синтезу данным методом, которые позволяют получать суперпарамагнитные нанокристаллы GdFeO₃ достаточно малых размеров, чтобы их можно было рассматривать в качестве функциональной основы T_1 – T_2 -двухмодального MPT-контрастного вещества.

В представленной диссертационной работе предложено микрореакторное соосаждение и ультразвуковое соосаждение как два новых подхода к синтезу нанокристаллов GdFeO₃ методом соосаждения. Первый подход заключается в том, что соосаждение осуществляется в микрореакторе со свободно сталкивающимися струями, а второй предполагает обработку среды соосаждения ультразвуком на протяжении всего процесса.

Степень разработанности темы исследования

В научной литературе существует немало работ, в которых нанокристаллы GdFeO₃ синтезированы методом соосаждения, однако в болышинстве этих работ полученные нанокристаллы не обладают необходимыми параметрами, позволяющими рассматривать их в качестве функциональной основы T_1 - T_2 -двухмодального MPT-контрастного вещества. Также в этих работах отсутствует систематическое исследование влияния условий соосаждения на физикохимические характеристики, магнитные и MPT-контрастные свойства нанокристаллов GdFeO₃, образующихся после термообработки. К тому же в литературе имеется ряд публикаций, посвящённых изучению механизма образования нанокристаллов GdFeO₃ методом соосаждения, однако, поскольку ультразвуковое соосаждение является новым подходом к синтезу этих нанокристаллов данным методом, механизм их образования при таком подходе ранее не был определён. Кроме того, в литературе отсутствуют данные об энтальпии реакции образования нанокристаллов GdFeO₃ из оксидов гадолиния и железа(III).

Цели и задачи

Цель работы – разработка физико-химических основ получения нанокристаллов ортоферрита гадолиния методом соосаждения, определение особенностей их строения и установление возможности их функционального применения в качестве основы T_1-T_2 -двухмодального МРТ-контрастного вещества. Основные решаемые задачи работы заключаются в:

- определении физико-химических основ формирования нанокристаллов GdFeO₃ методом соосаждения;
- установлении влияния условий соосаждения на физико-химические характеристики нанокристаллов GdFeO₃, образующихся после термообработки;
- установлении влияния условий соосаждения на магнитные свойства нанокристаллов GdFeO₃, образующихся после термообработки;
- установлении влияния условий соосаждения на МРТ-контрастные свойства нанокристаллов GdFeO₃, образующихся после термообработки, в их

коллоидных растворах.

Научная новизна

- Предложены новые подходы к синтезу нанокристаллов GdFeO₃ меньших размеров и меньшей степени агрегации методом соосаждения, такие как микрореакторное соосаждение и ультразвуковое соосаждение;
- Установлено влияние методики соосаждения, температуры растворов реагентов, концентраций катионов металлов, расходов растворов реагентов, угла столкновения их струй и ультразвуковой обработки при соосаждении на структурные, дисперсные и морфологические характеристики нанокристаллов GdFeO₃, образующихся после термообработки;
- Установлено влияние методики соосаждения и ультразвуковой обработки при соосаждении на магнитные свойства нанокристаллов GdFeO₃, образующихся после термообработки;
- Установлено влияние методики соосаждения и ультразвуковой обработки при соосаждении на МРТ-контрастные свойства нанокристаллов GdFeO₃, образующихся после термообработки, в их коллоидных растворах;
- Определён механизм образования нанокристаллов GdFeO₃ методом ультразвукового соосаждения и выявлена важная роль в этом карбонатных примесей;
- Определено содержание карбонатов в производных оксикарбоната гадолиния при различных температурах термообработки соосаждённых гидроксидов;
- Определены энтальпия и энергия активации реакции образования нанокристаллов GdFeO₃ из оксидов гадолиния и железа(III).

Теоретическая и практическая значимость работы

- Нанокристаллы GdFeO₃, полученные микрореакторным и ультразвуковым соосаждением, можно рассматривать как функциональную основу T₁-T₂двухмодальных МРТ-контрастных веществ при определённой магнитной индукции;
- Полученные результаты можно использовать для синтеза нанокристаллов GdFeO₃ с заданными структурными, дисперсными и морфологическими характеристиками путём варьирования методики соосаждения, температуры растворов реагентов, концентраций катионов металлов, расходов растворов реагентов и угла столкновения их струй, а также применения ультразвуковой обработки при соосаждении;
- Полученные результаты можно использовать для синтеза нанокристаллов GdFeO₃ с заданными магнитными свойствами путём варьирования методики соосаждения и применения ультразвуковой обработки при соосаждении;

 Полученные результаты можно использовать для синтеза нанокристаллов GdFeO₃ с различными MPT-контрастными свойствами путём варьирования методики соосаждения и применения ультразвуковой обработки при соосаждении.

Методология и методы исследования

Полученные образцы исследованы комплексом современных физикохимических методов анализа, включая ренттеноспектральный микроанализ (PCMA), дифференциальную сканирующую калориметрию и термогравиметрический анализ (ДСК-ТГА), рентгеновскую дифрактометрию (РД), инфракрасную спектроскопию (ИК), адсорбционно-структурный анализ (АСА), сканирующую и просвечивающую электронные микроскопии (ПЭМ), дифракцию электронов выбранной области (ДЭВО), электронную спектроскопию диффузного отражения, ⁵⁷Fe-мёссбауэровскую спектроскопию, вибрационную магнитометрию (ВМ), динамическое рассеяние света (ДРС), атомно-абсорбционную спектроскопию и протонный магнитный резонанс (ПМР).

Положения, выносимые на защиту

- Результаты определения физико-химических основ формирования нанокристаллов GdFeO₃ методом соосаждения;
- Результаты установления влияния условий соосаждения на физико-химические характеристики нанокристаллов GdFeO₃, образующихся после термообработки;
- Результаты установления влияния условий соосаждения на магнитные свойства нанокристаллов GdFeO₃, образующихся после термообработки;
- Результаты установления влияния условий соосаждения на МРТ-контрастные свойства нанокристаллов GdFeO₃, образующихся после термообработки, в их коллоидных растворах.

Степень достоверности и апробация результатов

Достоверность результатов работы обеспечивается использованием современного комплекса синтетических и аналитических методов, а также согласованностью результатов, полученных различными методами физико-химического анализа, как между собой, так и с литературными данными.

Результаты работы апробированы на 9 конференциях – 3 международных и 6 всероссийских. По теме диссертации опубликовано 8 статей в 7 российских и зарубежных рецензируемых журналах, из них 6 журналов индексируются в базах данных «Web of Science» и «Scopus» и один – в базе данных «РИНЦ».

Диссертационная работа содержит введение, 5 глав, заключение, список литературы и одно приложение. Работа изложена на 140 страницах и включает 51 рисунок, 19 таблиц, 26 формул, 178 библиографических ссылок на использованные литературные источники.

Часть работы выполнена в рамках проекта Российского научного фонда (РНФ) № 19-73-00286 – «Разработка гибридных МРТ-контрастных агентов на основе суперпарамагнитных наночастиц ортоферрита гадолиния».

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во **введении** обоснована актуальность темы диссертации, сформулированы цель и задачи исследования, показаны научная новизна и практическая значимость работы, а также приведены положения, выносимые на защиту.

В литературном обзоре (глава 1) описаны основной принцип МРТ и МРТ-контрастные вещества (T_1 -, T_2 - и T_1 - T_2 -двухмодальные); разъяснены понятия времён и скоростей релаксации, T_1 - и T_2 -релаксивности; рассмотрен GdFeO₃ как функциональная основа МРТ-контрастных веществ; представлены его кристаллическая и магнитная структуры, а также приведены методы синтеза нанокристаллов GdFeO₃ с особым вниманием к методу соосаждения.

В экспериментальной части (глава 2) описаны потенциометрические титрования в системе «Gd(NO₃)₃–Fe(NO₃)₃–NH₃–H₂O», синтез нанокристаллов GdFeO₃ и приготовление их коллоидных растворов; приведены методы физикохимического анализа объектов исследования и методы дополнительных расчётов, в том числе энтальпии и энергии активации реакции образования нанокристаллов GdFeO₃.

Нанокристаллы GdFeO₃ синтезировали прямым, обратным, микрореакторным, ультразвуковым (и безультразвуковым) соосаждением гидроксидов гадолиния и железа(III) (**рис. 1**) с последующей термообработкой высушенных соосаждённых гидроксидов при 750 °C на воздухе в течение 4 часов.

Рис. 1 – Схемы и условия соосаждения гидроксидов гадолиния и железа(III): (a) прямого; (b) обратного; (b) микрореакторного; (г) ультразвукового: нит – нитраты; осд – осадитель

В главе 3 представлены и обсуждены результаты определения физикохимических основ формирования нанокристаллов GdFeO₃ методом соосаждения.

Расчёт ионных равновесий в системе «Gd(NO₃)₃-Fe(NO₃)₃-H₂O» (рис.

2) показал, что концентрации Gd^{3+} и Fe^{3+} в растворе нитратов гадолиния и железа(III), соответствующие минимальной разнице в pH полного осаждения гидроксидов гадолиния и железа(III) при 25 °C, составляют 0,01 М; а по результатам *потенциометрических титрований в системе «Gd(NO₃)₃–Fe(NO₃)₃–NH₃–H₂O» (рис. 3), pH выше 8 можно считать пригодным для соосаждения этих гидроксидов.*

*Механизм образования нанокристаллов GdFeO3 методом ультразву*кового соосаждения изучали комплексом физико-химических методов анализа.

По данным PCMA, содержание гадолиния и железа в образце соосаждённых гидроксидов соответствует стехиометрии GdFeO₃, а обнаруженный в нём углерод связан с наличием CO_3^{2-} в результате активной сорбции CO_2 из окружающего воздуха в растворы реагентов при их приготовлении или на поверхность гидроксидов при их промывке и сушке.

По данным ДСК–ТГА, при термообработке гидроксиды гадолиния и железа(III) претерпевают ряд физико-химических процессов до образования GdFeO₃, включая испарение адсорбированной воды, дегидратацию гидроксидов, а также разложение карбоната и оксикарбонатов гадолиния.

По данным РД (**рис. 4**), продукт термообработки при 650 °С – рентгеноаморфный, а продукты термообработки при 800 °С и выше полностью состоят из *o*-GdFeO₃. В остальных продуктах присутствуют другие кристаллические фазы, которыми могут быть *h*-Gd₂O₃ и *c*-Gd₂O₃. Кроме того, последние продукты содержат рентгеноаморфные фазы, включающие *am*-Fe₂O₃, *am*-Gd₂O₃ и/или производные оксикарбоната гадолиния (*am*-Gd₂O_{3-x}(CO₃)_x). Согласно **рис. 5**, при повышении температуры обработки до 700 °С резко снижается массовая доля рентгеноаморфных фаз и резко возрастает массовая доля GdFeO₃, что можно объяснить образованием GdFeO₃ в результате реакции аморфных оксидов (первичный карбонат-независимый путь); а массовые доли *h*-Gd₂O₃ и *c*-Gd₂O₃ прогрессивно возрастают с ростом температуры до 725 °С, выше которой начинают постепенно уменьшаться. Здесь *h*-Gd₂O₃, вероятнее всего, образуется за счёт разложения *am*-Gd₂O_{3-x}(CO₃)_x и переходит в *c*-Gd₂O₃, который реагирует с *am*-Fe₂O₃ с образованием GdFeO₃ (вторичный карбонат-зависимый путь). Предложенный механизм представлен на **рис. 6**.

На ИК-спектрах (**рис.** 7) интенсивность валентных колебаний CO_3^{2-} постепенно уменьшается с ростом температуры, что хорошо согласуется с нашим предположением, что $Gd_2O_{3-x}(CO_3)_x$ разлагается с образованием *h*-Gd₂O₃.

По результатам расчёта *x* в формуле $Gd_2O_{3-x}(CO_3)_x$ при различных температурах по данным ТГА и РД, установлено, что при ~266–426 °C $Gd_2(CO_3)_3$ разлагается до $Gd_2O(CO_3)_2$, который при ~553–601 °C разлагается до $Gd_2O_2CO_3$, который, в свою очередь, разлагается до Gd_2O_3 при ~776–839 °C.

Энтальпию реакции образования нанокристаллов GdFeO₃ из простых оксидов рассчитывали по данным ДСК-ТГА с помощью двух эталонов, претерпевающих определённые фазовые превращения с известными энтальпиями при температурах ниже и выше температуры образования GdFeO₃ (рис. 8). Полученное значение составляет $-16,89 \pm 0,36$ кДж моль⁻¹. А энергию активации реакции образования нанокристаллов GdFeO₃ рассчитывали по данным ДСК с помощью трёх неизотермических кинетических методов, выражающих связь между скоростью нагрева β и абсолютной температурой максимума эффекта образования GdFeO₃ $T_{\text{макс}}$ (рис. 9). Она составляет 1193,62 ± 112,05, 1202,27 + 112,06 и 1151,08 + 106,53 кДж моль⁻¹ по методам Киссинджера, Огиса-Беннета/Босуэлла и Флинна-Уолла-Одзавы соответственно.

В главе 4 представлены и обсуждены результаты установления влияния условий соосаждения на физико-химические характеристики образующихся нанокристаллов GdFeO₃.

Исследуя влияние методики соосаждения, установлено, что средний размер кристаллитов GdFeO₃, рассчитанный на основании уширения рефлекса (111) по формуле Шеррера, при прямом соосаждении наименьший, а при обратном и микрореакторном – практически одинаков (рис. 10). По данным АСА (рис. 11), удельная поверхность по БЭТ при микрореакторном соосаждении наибольшая, а при прямом – наименьшая. Характерные размеры частиц GdFeO₃, рассчитанные по удельной поверхности и рентгеновской плотности, существенно превышают средние размеры кристаллитов, что указывает на агрегацию нанокристаллов. Однако при микрореакторном соосаждении степень агрегации наименьшая, что можно объяснить интенсификацией массо- и теплообмена при использовании микрореакторов на стадии соосаждения.

Рис. 10 - Распределения кристаллитов GdFeO3, полученных различными методиками соосаждения, по размерам

Исследуя влияние температуры растворов реагентов в диапазоне 0– 50 °C, установлено, что при классическом (обратном) и микрореакторном соосаждении при 0 °C средний размер кристаллитов GdFeO₃ наименьший и распределение этих кристаллитов по размерам самое узкое, что можно объяснить увеличением размера критического зародыша, растворимости, степени насыщения и скорости диффузии в системе с ростом температуры.

По данным ДРС приготовленных коллоидных растворов нанокристаллов GdFeO₃, полученных обратным и микрореакторным соосаждением при 0 °С (**рис. 12**), размер частиц в обоих растворах больше их характерного размера, что указывает на агломерацию агрегатов нанокристаллов. Однако при микрореакторном соосаждении средний размер этих агломератов меньше, их распределение по размерам уже, а также агломераты второго и третьего порядка отсутствуют, что подтверждает преимущества данной методики.

При микрореакторном соосаждении исследовали и влияния концентраций катионов металлов в диапазоне 0,001–0,1 М, расходов растворов реагентов в диапазоне $Q_j = 100-400$ мл мин⁻¹ и угла столкновения их струй в диапазоне $2\theta = 90-180^{\circ}$. Установлено, что кристаллиты GdFeO₃ с наименьшим средним размером получаются при концентрациях катионов металлов 0,01 М, что согласуется с результатами расчётов ионных равновесий (рис. 2), а также при расходах растворов реагентов 200 мл мин⁻¹ и при угле столкновения их струй 90°, что можно объяснить на основании минимального уровня скорости диссипации энергии, необходимого для «идеального» микроперемешивания.

Исследуя влияние ультразвуковой обработки при соосаждении, установлено, что данный подход привёл к уменьшению среднего размера кристаллитов на ~21 % и уменьшению их наивероятнейшего размера на ~31 %. Из рис. 13 видно, что при ультразвуковом соосаждении распределение пор по ширине сместилось в сторону более крупных мезопор, что означает увеличение пространства между отдельными нанокристаллами GdFeO₃ и снижение степени их агрегации. Более того, удельная поверхность по БЭТ увеличилась в ~2,2 раза, а количество наночастиц в одном агрегате снизилось в ~5,3 раза.

Рис. 13 – (а) Изотермы адсорбции–десорбции азота нанокристаллов GdFeO₃, полученных с ультразвуком и без него. На вставках – распределения пор по ширине: S_{mur} и S_{mubb} – интегральная и диференциальная площади поверхности соответственно; (б) Данные ACA этих нанокристаллов

ПЭМ-изображения синтезированных нанокристаллов GdFeO₃ (**рис. 14**) показывают схожую морфологию, но заметную разницу как в размере, так и в степени агрегации. Видно, что размер кристаллитов при прямом соосаждении меньше, чем при обратном и микрореакторном, что согласуется с данными РД (**рис. 10**), однако степень агрегации при микрореакторном соосаждении ниже, чем при прямом и обратном, что согласуется с данными ACA (**рис. 11**). Также при ультразвуковом соосаждении размер кристаллитов GdFeO₃ меньше и степень агрегации ниже, чем при безультразвуковом.

Рис. 14 – ПЭМ- (и ДЭВО-) изображения нанокристаллов GdFeO₃, полученных прямым (а), обратным (б), микрореакторным (в), ультразвуковым (г) и безультразвуковым (д) соосаждением

В главе 5 представлены и обсуждены результаты установления влияния условий соосаждения на функциональные свойства образующихся нанокристаллов GdFeO₃.

При исследовании *влияния методики соосаждения* на магнитные **свойства** установлено, что в ⁵⁷Fe-мёссбауэровских спектрах продуктов термообработки, полученных обратным и микрореакторным соосаждением при 0 °С, наблюдается секстет, эффективное сверхтонкое магнитное поле которого соответствует *o*-GdFeO₃. Однако каждый секстет состоит из трёх составляющих: две из них предположительно связаны с двумя магнитноупорядоченными подрешётками Fe³⁺, а третья – с вкладом искажённой структуры поверхности нанокристаллов.

По данным ВМ, зависимости намагниченности продуктов термообработки гидроксидов, соосаждённых различными методиками, от напряжённости магнитного поля (**рис. 15**) имеют S-образную форму с отсутствием выхода на насыщение, что с учётом низкой остаточной намагниченности M_r может указывать на суперпарамагнитный характер нанокристаллов GdFeO₃. Однако наблюдается высокая коэрцитивная сила H_c , связанная с агрегацией нанокристаллов. Стоит отметить, что коэрцитивная сила при микрореакторном соосаждении в ~2,8 и ~3,2 раза меньше, чем при прямом и обратном соответственно, что в очередной раз подтверждает преимущества данной методики.

Исследуя влияние ультразвуковой обработки при соосаждении, установлено, что данный подход привёл к улучшению ферромагнитного поведения с возможным суперпарамагнитным состоянием нанокристаллов GdFeO₃ за счёт повышения фазовой однородности в результате усиленной диффузии и перемешивания, а также к уменьшению остаточной намагниченности в ~6 раз при 300 К и в ~28,5 раза при 100 К (**рис. 16**).

Чтобы исследовать **МРТ-контрастные свойства**, методом ПМР измеряли времена релаксации T_1 и T_2 в коллоидных растворах синтезированных нанокристаллов GdFeO₃ с различными концентрациями. Затем скорости релаксации $(1/T_1 \text{ и } 1/T_2)$ строили в зависимости от концентрации, а по наклонам полученных прямых определяли соответствующие релаксивности $(r_1 \text{ и } r_2)$.

Исследуя влияние методики соосаждения, установлено, что полученные зависимости показывают увеличение r_1 в ряду «прямое < обратное < микрореакторное» и увеличение r_2 в противоположном ряду (рис. 17). Это можно объяснить тем, что T_1 -релаксивность увеличивается с увеличением удельной поверхности нанокристаллов GdFeO₃, а T_2 -релаксивность зависит от их суперпарамагнитных характеристик. И так как по соотношению r_2/r_1 можно классифицировать МРТ-контрастные вещества как T_1 -контрастные вещества ($r_2/r_1 < 10$) или T_1 - T_2 -двухмодальные контрастные вещества ($2 < r_2/r_1 < 10$), то нанокристаллы GdFeO₃, полученные микрореакторным, прямым и обратным соосаждением, можно отнести к T_1 -, T_2 - и T_1 - T_2 -двухмодальным контрастным веществам соответственно.

Влияние ультразвуковой обработки при соосаждении на МРТ-контрастные свойства исследовали при различных температурах. Установлено, что обе релаксивности уменьшаются с ростом температуры и в деионизированной

воде они выше, чем в физиологическом растворе (**рис. 18**). При этом соотношение r_2/r_1 существенно не изменилось, и нанокристаллы GdFeO₃, полученные ультразвуковым соосаждением, можно отнести к T_1 -контрастным веществам.

Рис. 18 – Зависимости скоростей T₁ - и T₂ - релаксации от концентрации нанокристаллов GdFeO₃, полученных с ультразвуком: (а) и (б) в деионизированной воде; (в) и (г) в физиологическом растворе (при ~0,47 Тл)

Однако времена релаксации измерялись при магнитной индукции ~0,45–0,47 Тл. Поэтому полученные релаксивности были приближённо пересчитаны при 1,5, 3 и 4,7 Тл полустатистическим методом, основанным на анализе литературных данных для структуроподобных веществ; часть результатов представлена в табл. 1 и на рис. 19.

Табл. 1	 Значения r₁, r₂ и r₂/r₁ 	исследованных нанокристаллов	GdFeO3 при различных магнитных полях	(в воде, при 30 °С)	
---------	---	------------------------------	--------------------------------------	---------------------	--

Образец	Магнитная индукция, Тл	r_1 , м M^{-1} с ⁻¹	r_2 , м M^{-1} с ⁻¹	r_2/r_1
Прямое	~0,45	0,28	3,57	12,58 (T ₂)
	1,5	0,11	2,14	19,65 (<i>T</i> ₂)
	3	0,06	3,96	61,56 (<i>T</i> ₂)
	4,7	0,04	4,71	124,23 (<i>T</i> ₂)
Обратное	~0,45	0,43	1,65	$3,80(T_1-T_2)$
	1,5	0,17	0,99	5,93 $(T_1 - T_2)$
	3	0,10	1,83	18,59 (<i>T</i> ₂)
	4,7	0,06	2,18	37,51 (<i>T</i> ₂)
Микрореакторное	~0,45	0,81	1,08	$1,33(T_1)$
	1,5	0,31	0,64	2,07 $(T_1 - T_2)$
	3	0,18	1,20	$6,50(T_1-T_2)$
	4,7	0,11	1,42	$13,11(T_2)$
Ультразвуковое	~0,47	3,93	4,21	$1,07(T_1)$
	1,5	1,51	2,52	1,67 (T_1)
	3	0,89	4,68	5,24 $(T_1 - T_2)$
	4,7	0,53	5,56	$10,58(T_2)$

Рис. 19 – Зависимость r_2/r_1 исследованных нанокристаллов GdFeO₃ от магнитной индукции (в воде, при 30 °C)

Установлено, что при изменении магнитного поля одни и те же нанокристаллы GdFeO₃ могут проявлять совершенно разные контрастные свойства:

- нанокристаллы GdFeO₃, полученные прямым соосаждением, можно отнести к T₂-контрастным веществам при всех индукциях магнитного поля от ~0,45 до 4,7 Тл;
- нанокристаллы GdFeO₃, полученные обратным соосаждением, можно отнести к T₁-T₂-двухмодальным контрастным веществам при ~0,45 и 1,5 Тл и к T₂-контрастным веществам при 3 и 4,7 Тл;
- нанокристаллы GdFeO₃, полученные микрореакторным соосаждением, можно отнести к T₁-контрастным веществам при ~0,45 Тл, к T₁-T₂-двухмодальным контрастным веществам при 1,5 и 3 Тл и к T₂-контрастным веществам при 4,7 Тл;

нанокристаллы GdFeO₃, полученные ультразвуковым соосаждением, можно отнести к *T*₁-контрастным веществам при ~0,47 и 1,5 Тл, к *T*₁-*T*₂-двухмодальным контрастным веществам при 3 Тл и к *T*₂-контрастным веществам при 4,7 Тл.

Учитывая тот факт, что в современных клинических условиях чаще всего используются МРТ-сканеры с магнитной индукцией от 1,5 до 3 Тл, T_1-T_2 двухмодальными контрастными свойствами могут обладать нанокристаллы GdFeO₃, полученные обратным соосаждением (при 1,5 Тл), ультразвуковым соосаждением (при 3 Тл) и микрореакторным соосаждением (при 1,5 и 3 Тл).

ЗАКЛЮЧЕНИЕ

- Образование нанокристаллов GdFeO₃ методом ультразвукового соосаждения происходит по двум путям: первичному карбонат-независимому пути, в котором *am*-Fe₂O₃ реагирует с *am*-Gd₂O₃, и вторичному карбонат-зависимому пути, в котором *am*-Fe₂O₃ реагирует с *c*-Gd₂O₃, трансформированным из *h*-Gd₂O₃, образующегося при разложении производных оксикарбоната гадолиния. Энтальпия реакции образования нанокристаллов GdFeO₃ из простых оксидов составляет –16,89 ± 0,36 кДж моль⁻¹, а энергия активации этой реакции, рассчитанная по методам Киссинджера, Огиса–Беннета/Босуэлла и Флинна–Уолла–Одзавы, составляет 1193,62 ± 112,05, 1202,27 ± 112,06 и 1151,08 ± 106,53 кДж моль⁻¹ соответственно.
- Нанокристаллы GdFeO₃, полученные прямым соосаждением, склонны к более сильной агрегации, чем нанокристаллы GdFeO₃, полученные обратным соосаждением, которые, в свою очередь, агрегируются сильнее, чем нанокристаллы GdFeO₃, полученные микрореакторным соосаждением. В исследованных условиях микрореакторного соосаждения кристаллиты GdFeO₃ с наименьшим средним размером получаются при температуре растворов реагентов 0 °C, как и в случае обратного соосаждения, а также при концентрациях катионов металлов 0,01 М, расходах растворов реагентов 200 мл мин⁻¹ и угле столкновения их струй 90°. Приготовленные коллоидные растворы нанокристаллов GdFeO₃, полученных микрореакторным и обратным соосаждением при 0 °C, отличаются друг от друга тем, что при микрореакторном соосаждении средний размер агломератов GdFeO₃ меньше, их распределение по размерам уже и агломераты второго и третьего порядка отсутствуют. Ультразвуковая обработка при соосаждении привела к уменьшению среднего размера образующихся кристаллитов GdFeO₃, уменьшению их наивероятнейшего размера, увеличению удельной поверхности нанокристаллов GdFeO₃ и снижению степени их агрегации.
- Магнитное поведение отдельных суперпарамагнитных нанокристаллов GdFeO₃ существенно отличается от магнитного поведения их агрегатов. При микрореакторном соосаждении коэрцитивная сила и остаточная намагниченность нанокристаллов GdFeO₃ меньше, чем при прямом и обратном

соосаждении. Ультразвуковая обработка при соосаждении привела к улучшению ферромагнитного поведения с возможным суперпарамагнитным состоянием нанокристаллов GdFeO₃ за счёт повышения фазовой однородности, а также к уменьшению остаточной намагниченности образующихся нанокристаллов GdFeO₃.

МРТ-контрастные свойства исследованных нанокристаллов GdFeO₃ в приготовленных коллоидных растворах зависят от температуры, растворителя, а также магнитной индукции, при изменении которой одни и те же нанокристаллы GdFeO₃ могут проявлять совершенно разные контрастные свойства. *T*₁-*T*₂-двухмодальными контрастными свойствами могут обладать нанокристаллы GdFeO₃, полученные обратным соосаждением (при ~0,45 и 1,5 Тл), ультразвуковым соосаждением (при 3 Тл) и микрореакторным соосаждением (при 1,5 и 3 Тл).

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ ПО ТЕМЕ ДИССЕРТАЦИИ

Статьи

Статьи в рецензируемых журналах, индексируемых в базах данных «Web of Science» и «Scopus»

- <u>Albadi, Y.</u> Physicochemical processes and thermochemical parameters of GdFeO₃ formation from amorphous hydroxides: decisive role of carbonate impurities / <u>Y. Albadi</u>, A. K. Bachina, V. I. Popkov // Journal of Thermal Analysis and Calorimetry. – 2023. – V. 148. – № 23. – P. 13281–13295.
- <u>Albadi, Y.</u> Ultrasound-assisted co-precipitation synthesis of GdFeO₃ nanoparticles: structure, magnetic and MRI contrast properties / <u>Y. Albadi</u>, M. S. Ivanova, L. Y. Grunin, R. A. Makarin, A. S. Komlev, M. I. Chebanenko, V. N. Nevedomskyi, V. I. Popkov // *Physical Chemistry Chemical Physics*. 2022. V. 24. № 47. P. 29014–29023.
- <u>Albadi, Y.</u> Physicochemical and hydrodynamic aspects of GdFeO₃ production using a free impinging-jets method / <u>Y. Albadi</u>, R. S. Abiev, A. A. Sirotkin, K. D. Martinson, M. I. Chebanenko, V. N. Nevedomskiy, I. V. Buryanenko, V. G. Semenov, V. I. Popkov // *Chemical Engineering and Processing: Process Intensification.* 2021. V. 166. 108473.
- <u>Albadi, Y.</u> The influence of co-precipitation technique on the structure, morphology and dual-modal proton relaxivity of GdFeO₃ nanoparticles / <u>Y. Albadi</u>, M. S. Ivanova, L. Y. Grunin, K. D. Martinson, M. I. Chebanenko, S. G. Izotova, V. N. Nevedomskiy, R. S. Abiev, V. I. Popkov // *Inorganics*. 2021. V. 9. № 5. 39.
- Popkov, V. I. The effect of co-precipitation temperature on the crystallite size and aggregation/ agglomeration of GdFeO₃ nanoparticles / V. I. Popkov, <u>Y. Albadi</u> // Nanosystems: Physics, Chemistry, Mathematics. – 2021. – V. 12. – № 2. – P. 224– 231.
- <u>Albadi, Y.</u> Synthesis of superparamagnetic GdFeO₃ nanoparticles using a free impinging-jets microreactor / <u>Y. Albadi</u>, A. A. Sirotkin, V. G. Semenov, R. S. Abiev, V. I. Popkov // Russian Chemical Bulletin. 2020. V. 69. № 7. Р. 1290–1295. [<u>Албади, Я.</u> Синтез суперпарамагнитных наночастиц GdFeO₃ с использованием микрореактора со свободно сталкивающимися струями / <u>Я.</u> <u>Албади</u>, А. А. Сироткин, В. Г. Семёнов, Р. Ш. Абиев, В. И. Попков // Известия Академии наук. Серия химическая. 2020. № 7. С. 1290–1295.]
- <u>Albadi, Y.</u> Synthesis of GdFeO₃ nanoparticles via low-temperature reverse coprecipitation: the effect of strong agglomeration on the magnetic behavior / <u>Y.</u> <u>Albadi</u>, K. D. Martinson, A. V. Shvidchenko, I. V. Buryanenko, V. G. Semenov, V. I. Popkov // Nanosystems: Physics, Chemistry, Mathematics. – 2020. – V. 11. – № 2. – P. 252–259.

Статья в рецензируемом журнале, индексируемом в базе данных «РИНЦ»

 Албади, Я. Двухмодальный контрастный агент для магнитно-резонансной томографии на основе наночастиц ортоферрита гадолиния: синтез, структура и перспективы применения / <u>Я. Албади</u>, В. И. Попков // Медицина: теория и практика. – 2019. – Т. 4. – № S – С. 35–36.

Тезисы докладов

- <u>Албади, Я.</u> Механизм образования нанокристаллов ортоферрита гадолиния при термообработке гидроксидов, полученных методом ультразвукового соосаждения / <u>Я. Албади</u>, В. И. Попков // Сборник тезисов XXI Молодёжной научной конференции «Функциональные материалы: синтез, свойства, применение». – Институт химии силикатов им. И. В. Гребенщикова, Санкт-Петербург. – 2023. – С. 29–30.
- <u>Албади, Я.</u> Расчёт энтальпии и энергии активации реакции образования нанокристаллов ортоферрита гадолиния из соответствующих простых оксидов / <u>Я. Албади</u>, В. И. Попков // *Материалы XIV Научной конференции* «*Традиции и инновации*». – Санкт-Петербургский государственный технологический институт (технический университет), Санкт-Петербург. – 2023. – С. 24.
- <u>Албади, Я.</u> Магнитные и МРТ-контрастные свойства нанокристаллического ортоферрита гадолиния, синтезированного методом соосаждения под действием ультразвука / <u>Я. Албади</u> // Материалы XXIX Всероссийской конференции молодых учёных «Актуальные проблемы биомедицины – 2023». – Первый Санкт-Петербургский государственный медицинский университет им. акад. И. П. Павлова, Санкт-Петербург. – 2023. – С. 330–331.
- <u>Албади, Я.</u> Влияние ультразвуковой обработки на соосаждение гидроксидов и их термостимулированную трансформацию в нанокристаллы GdFeO₃ / <u>Я.</u> <u>Албади</u>, В. И. Попков // *Тезисы докладов XXV Всероссийской конференции молодых учёных-химиков*. – Национальный исследовательский Нижегородский государственный университет им. Н. И. Лобачевского, Нижний Новгород. – 2022. – С. 264.
- Abiev, R. S. Mixing effects in GdFeO₃ particle precipitation process by use of impinging jets microreactor / R. S. Abiev, A. A. Sirotkin, <u>Y. Albadi</u>, V. I. Popkov // Abstracts of XXIV International Conference on Chemical Reactors (CHEMRE-ACTOR-24). – Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia & Politecnico di Milano, Milan, Italy. – 2021. – P. 447–448.
- 6. <u>Albadi, Y.</u> The influence of co-precipitation technique on the agglomeration and functional properties of GdFeO₃ nanoparticles / <u>Y. Albadi</u>, V. I. Popkov // Materials of XXII International Scientific Conference «Chemistry and Chemical

Engineering in XXI century». – Tomsk Polytechnic University, Tomsk. – 2021. – V. 2. – P. 174–175.

- Албади, Я. Получение нанокристаллов ортоферрита гадолиния с использованием микрореактора со свободно сталкивающимися струями: физико-химические и гидродинамические аспекты / <u>Я. Албади</u>, А. А. Сироткин, Р. Ш. Абиев, В. И. Попков // Сборник тезисов XI Научно-технической конференции студентов, аспирантов, молодых учёных «Неделя науки 2021». Санкт-Петербургский государственный технологический институт (технический университет), Санкт-Петербург. 2021. С. 9.
- <u>Albadi, Y.</u> Nanocrystalline gadolinium orthoferrite as a promising dual-modal contrast agents for magnetic resonance imaging / <u>Y. Albadi</u>, V. I. Popkov // Book of Abstracts of XXI Mendeleev Congress on General and Applied Chemistry. – Saint Petersburg. – 2019. – V. 6. – P. 191.
- <u>Албади, Я.</u> Двухмодальный контрастный агент для магнитно-резонансной томографии на основе наночастиц ортоферрита гадолиния: синтез, структура и перспективы применения / <u>Я. Албади</u>, В. И. Попков // Сборник трудов Третьего Национального конгресса «Здоровые дети – будущее страны». – Санкт-Петербургский государственный педиатрический медицинский университет, Санкт-Петербург. – 2019. – С. 35–36 (статья № 8).